Preview

Journal of Siberian Medical Sciences

Advanced search

Association of the novel coronavirus infection (COVID-19) and endometrial pathology (literature review)

https://doi.org/10.31549/2542-1174-2024-8-2-114-126

Abstract

This literature review presents available information on the possible ways in which the SARS-CoV-2 virus and the novel coronavirus infection (COVID-19) aff ect the female reproductive system. The putative mechanisms of the impact of SARSCoV-2 on the uterine mucosa and the possible contribution of the virus to the development of endometrial hyperplasia are described.

About the Authors

A. V. Zatvornitskaya
South Ural State Medical University
Russian Federation

Aleksandra V. Zatvornitskaya – Cand. Sci. (Med.), Assistant, Department of Pathological Anatomy and Forensic Medicine named after Professor V.L. Kovalenko

Chelyabinsk



E. L. Kazachkov
South Ural State Medical University
Russian Federation

Evgeniy L. Kazachkov – Dr. Sci. (Med.), Professor, Head, Department of Pathological Anatomy and Forensic Medicine named after Professor V.L. Kovalenko

Chelyabinsk



E. A. Kazachkova
South Ural State Medical University
Russian Federation

Ella A. Kazachkova – Dr. Sci. (Med.), Professor, Department of Obstetrics and Gynecology

Chelyabinsk



E. E. Voropaeva
South Ural State Medical University
Russian Federation

Ekaterina E. Voropaeva – Dr. Sci. (Med.), Professor, Department of Pathological Anatomy and Forensic Medicine named after Professor V.L. Kovalenko

Chelyabinsk



References

1. Hamming I., Timens W., Bulthuis M.L. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A fi rst step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631-637. DOI: 10.1002/path.1570.

2. Hernández A., Papadakos P.J., Torres A. et al. Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19. Rev. Esp. Anestesiol. Reanim. (Engl. Ed.). 2020;67(5):245-252. DOI: 10.1016/j.redar.2020.03.004.

3. Vora S.M., Lieberman J., Wu H. Infl ammasome activation at the crux of severe COVID-19. Nat. Rev. Immunol. 2021;21(11):694-703. DOI: 10.1038/s41577-021-00588-x.

4. Nasonov E.L. Coronavirus disease 2019 (COVID-19) and autoimmunity. Rheumatology Science and Practice. 2021;59(1):5-30. DOI: 10.47360/1995-4484-2021-5-30. (In Russ.)

5. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. DOI: 10.1016/S0140-6736(20)30937-5

6. Shchegolev A.I., Tumanova U.N., Serov V.N. Placental lesions in pregnant women with SARS-COV-2 infection. Obstetrics and Gynecology. 2020;12:44-52. DOI: 10.18565/aig.2020.12.44-52. (In Russ.)

7. Kazachkova E.A., Khelashvili I.G., Voropaeva E.E. et al. (2023). Novel coronavirus infection COVID-19 with multisystem manifestations during pregnancy: diffi culties in diff erential diagnosis and treatment, perinatal outcome (case report). In Current Issues in Pathoanatomical Practice: Materials of the VII All-Russian Scientifi c and Practical Conference with International Participation, Chelyabinsk, April 07–08, 2023. Che lyabinsk, South Ural State Medical University. P. 45–50. (In Russ.)

8. Lambert D.W., Yarski M., Warner F.J. et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 2005;280(34):30113-30119. DOI: 10.1074/jbc.M505111200.

9. Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020;9(1):45. DOI: 10.1186/s40249-020-00662-x.

10. Medina-Enríquez M.M., Lopez-León S., Carlos-Escalante J.A. et al. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci. 2020;10(1):148. DOI: 10.1186/s13578-020-00519-8.

11. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269. DOI:10.1038/s41586-020-2008-3.

12. Chan J.F.W., Kok K.H., Zhu Z. et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020;9(1):221-236. DOI: 10.1080/22221751.2020.1719902

13. Kogan E.A., Berezovsky Yu.S., Protsenko D.D. et al. Pathological anatomy of infection caused by SARS-CoV-2. Russian Journal of Forensic Medicine. 2020;6(2):8-30. DOI: 10.19048/2411-8729-2020-6-2- 8-30. (In Russ.)

14. Yan R., Zhang Y., Li Y. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-1448. DOI: 10.1126/science.abb2762.

15. Hoff mann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271-280.e8. DOI: 1 0.1016/j.cell.2020.02.052.

16. Dolgushin G.O., Romanov A.Yu. Eff ects of SARS-CoV-2 on human reproduction. Obstetrics and Gynecology. 2020;11:6-12. DOI: 10.18565/aig.2020.ll.6-12. (In Russ.)

17. Vaz-Silva J., Tavares R., Ferreira M. et al. Tissue specifi c localization of angiotensin-(1-7) and its receptor Mas in the uterus of ovariectomized rats. J. Mol. Histol. 2012;43(5):597–602.

18. Ishchenko L.S., Voropaeva E.E., Kazachkova E.A. et al. New coronavirus infection COVID-19 and women’s reproductive health. Facts and assumptions. Yakut Medical Journal. 2022;2(78):96-101. DOI: 10.25789/YMJ.2022.77.25. (In Russ.)

19. Li R., Yin T., Fang F. et al. Potential risks of SARS-CoV-2 infection on reproductive health. Reprod. Biomed. Online. 2020;41(1):89-95. DOI: 10.1016/j.rbmo.2020.04.018.

20. di Mascio D., Khalil A., Saccone G. et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstetr. Gynecol. MFM. 2020;2(2):100107. DOI: 10.1016/j.ajogmf.2020.100107.

21. Schwartz D.A., Graham A.L. Potential maternal and infant outcomes from coronavirus 2019-nCoV (SARS-CoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections. Viruses. 2020;12(2):194. DOI: 10.3390/v12020194.

22. Ferrazzi E.M., Frigerio L., Cetin I. et al. COVID-19 Obstetrics Task Force, Lombardy, Italy: Executive management summary and short report of outcome. Int. J. Gynaecol. Obstet. 2020;149(3):377-378. DOI:10.1002/ijgo.13162.

23. Vaz-Silva J., Carneiro M.M., Ferreira M.C. et al. The vasoactive peptide angiotensin-(1-7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod. Sci. 2009;16(3):247-256. DOI: 10.1177/1933719108327593.

24. Jing Y., Run-Qian L., Hao-Ran W. et al. Potential infl uence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 2020;26(6):367-373. DOI: 10.1093/molehr/gaaa030.

25. Cree I.A., White V.A., Indave B.I., Lokuhetti D. Revising the WHO classifi cation: female genital tract tumours. Histopathology. 2020;76(1):151-156. DOI: 10.1111/his.13977.

26. Ahmed A., Li X., Shams M. et al. Localization of the angiotensin II and its receptor subtype expression in human endometrium and identifi cation of a novel high-affi nity angiotensin II binding site. J. Clin. Invest. 1995;96(2):848-857. DOI: 10.1172/JCI118131.

27. Li X., Ahmed A. Expression of angiotensin II and its receptor subtypes in endometrial hyperplasia: a possible role in dysfunctional menstruation. Lab. Invest. 1996;75:137–145.

28. Elenson L.H., Matias-Guiu X., Mutter G.L. (2020). Endometrial hyperplasia without atypia. In I.A. Cree, J. Ferlay, R. Jakob et al. (eds). WHO Classifi cation of Tumours. 5th ed. Female Genital Tumours. Lyon: IARC Publications. P. 248–249.

29. Lax S.F., Mutter G.L. (2020). Endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia. In I.A. Cree, J. Ferlay, R. Jakob et al.(eds). WHO Classifi cation of Tumours. 5th ed. Female Genital Tumours. Lyon: IARC Publications. P. 250–251.

30. Ferlay J., Soerjomataram I., Ervik M. et al. (2012). GLOBOCAN. Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. Lyon, France: International Agency for Research on Cancer.

31. Pshukova Е.М., Gamaeva F.B., Musukaeva A.B., Pshukova A.A. Endometry cancer in diff eren age groups of patients: morphological features. Medicine. Sociology. Philosophy. Applied Research. 2021;5:4-7. (In Russ.)

32. Solopova A., Idrisova L., Chukanova E. Endometrial cancer: opportunities and prospects of rehabilitation. Vrach. 2018;29(10):12-14. DOI: 10.29296/25877305-2018-10-03.

33. Delforce S., Lumbers E., Corbisier de Meaultsart C. et al. Expression of renin-angiotensin system (RAS) components in endometrial cancer. Endocr. Connect. 2017;6(1):9-19. DOI: 10.1530/EC-16-0082.

34. Shibata K., Kikkawa F., Mizokami Y. et al. Possible involvement of adipocyte-derived leucine aminopeptidase via angiotensin II in endometrial carcinoma. Tumour Biol. 2005;26(1):9-16. DOI: 10.1159/000084181.

35. Watanabe Y., Shibata K., Kikkawa F. et al. Adipocytederived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angio-tensin system. Clin. Cancer Res. 2003;9(17):6497- 6503.

36. Vehar S., Boushra M., Ntiamaah P., Biehl M. Post-acute sequelae of SARS-CoV-2 infection: Caring for the ‘longhaulers’. Cleve. Clin. J. Med. 2021;88(5):267-272. DOI: 10.3949/ccjm.88a.21010

37. Karateev A.E., Amirdzhanova V.N., Nasonov E.L. et al. “Post-COVID syndrome: The focus is on musculoskeletal pain. Rheumatology Science and Practice. 2021;59(3):255-262. DOI: 10.47360/1995-4484-2021-255-262.

38. National Institute for Health and Care Excellence. COVID-19 Rapid Guideline: managing the long-term eff ects of COVID-19. URL: www.nice.org.uk/guidance/ng188 (accessed 06.12.2023).

39. ICD-10, 10th revision. Condition after COVID-19 (U09). U09.9. Post-COVID-19 condition, unspecifi ed. URL: https://mkb-10.com/index.php?pid=23014 (accessed 06.12.2023).

40. The European Health Report 2021: highlights. Taking stock of the health-related Sustainable Development Goals during the COVID-19 pandemic with a focus on leaving no one behind / World Health Organization. Europe. URL: https://www.who.int/europe/ru/data/9789289057608 (accessed: 06.12.2023).

41. Li K., Chen G., Hou H. et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod. Biomed. Online. 2021;42(1):260-267. DOI: 10.1016/j.rbmo.2020.09.020

42. Phelan N., Behan L.A., Owens L. The impact of the COVID-19 pandemic on women’s reproductive health. Front. Endocrinol. (Lausanne). 2021;12:642755. DOI: 10.3389/fendo.2021.642755.

43. Takmaz T., Gundogmus I., Okten S.B., Gunduz A. The impact of COVID-19-related mental health issues on menstrual cycle characteristics of female healthcare providers. J. Obstet. Gynaecol. Res. 2021;47(9):3241- 3249. DOI: 10.1111/jog.14900.

44. Belokrinitskaya T.E., Frolova N.I., Mudrov V.A. et al. Post-COVID-19 syndrome in early reproductive age women. Obstetrics and Gynecology. 2023;7:47-54 DOI: 10.18565/aig.2023.67. (In Russ.)

45. Wang S., Farland L.V., Gaskins A.J. et al. Association of laparoscopically-confi rmed endometriosis with long COVID-19: a prospective cohort study. Am. J. Obstet. Gynecol. 2023;228(6):714.e1-714.e13. DOI: 10.1016/j.ajog.2023.03.030.

46. Subramanian A., Nirantharakumar K., Hughes S. et al. Symptoms and risk factors for long COVID in nonhospitalized adults. Nat. Med. 2022;28(8):1706-1714. DOI: 10.1038/s41591-022-01909-w.

47. Kazachkov E.L., Zatvornitskaya A.V., Voropaeva Е.Е. et al. Characteristics of the proliferative and antiproliferative activities of the cells of the endometrium in its hyperplasia concurrent with chronic endometritis. Obstetrics and Gynecology. 2019;8:100-106. DOI: 10.18565/aig.2019.8.100-106. (In Russ.)

48. Tolibova G.Kh. Pathogenetic determinants of endometrial dysfunction in patients with myoma. Journal of Obstetrics and Women’s Diseases. 2018;67(1):65-72. DOI: 10.17816/JOWD67165-72. (In Russ.)

49. Orazov M.R. Mikhaleva L.M., Semenov P.A. et al. Chronic endometritis and controversies of antibiotic therapy. Diffi cult Patient. 2020;18(10):41-46. DOI: 10.24411/2074-1995-2020-10072. (In Russ.)

50. Kazachkova E.A., Voropaeva Е.Е., Zatvornitskaya А.V., Kazachkov Е.L. (2022). Endometrial Hyperplasia. Chelyabinsk: Titul. 224 p. (In Russ.)

51. Kuznetsova I.V. Possibilities for treating endometrial hyperplastic processes. Diffi cult Patient. 2010;8(1- 2):18-22. (In Russ.)

52. Kimura F., Takebayashi A., Ishida M. et al. Chronic endometritis and its eff ect on reproduction. Review. J. Obstet. Gynaecol. Res. 2019; 45( 5):951-960.

53. Kuchler T., Günthner R., Ribeiro A. et al. Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic infl ammation. Angiogenesis. 2023;26(4):547-563. DOI: 10.1007/s10456-023-09885-6.

54. Novikov V.Ye., Levchenkova O.S. Hypoxia-inducible factor as a pharmacological target. Reviews on Clinical Pharmacology and Drug Therapy. 2013;11(2):8-16. (In Russ.)

55. Dobrokhotova Yu.E., Saprykina L.V., Chulkova O.V. Methods of treatment for atypical endometrial hyperplasia. Journal of General Medicine. 2011;1:71-75. (In Russ.)

56. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond). 2021;53(10):737-754. DOI: 10.1080/23744235.2021.1924397.

57. Yeoh Y.K., Zuo T., Lui G.C.Y. et al. Gut microbiota composition refl ects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698–706. DOI: 10.1136/gutjnl-2020-323020.

58. Zuo T., Zhan H., Zhang F. et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020;159(4):1302-1310e5. DOI: 10.1053/j.gastro.2020.06.048.

59. Zuo T., Zhang F., Lui G.C.Y. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944- 955e8. DOI: 10.1053/j.gastro.2020.05.048.

60. Avdeev S.N., Adamyan L.V., Alekseeva E.I. et al. (2022). Prevention, Diagnosis and Treatment of the Novel Coronavirus Infection (COVID-19): Interim Guidelines. Version 17, 14.12.2022. Moscow: Ministry of Healthcare of the Russian Federation. 260 p. (In Russ.)

61. Simões e Silva A.C., Silveira K.D., Ferreira A.J., Teixeira M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in infl ammation and fi brosis. Br. J. Pharmacol. 2013;169(3):477-492. DOI: 10.1111/bph.12159.

62. Batlle D.. Jose Soler M., Ye M. ACE2 and diabetes: ACE of ACEs? Diabetes. 2010;59(12):2994-2996. DOI: 10.2337/db10-1205.


Review

For citations:


Zatvornitskaya A.V., Kazachkov E.L., Kazachkova E.A., Voropaeva E.E. Association of the novel coronavirus infection (COVID-19) and endometrial pathology (literature review). Journal of Siberian Medical Sciences. 2024;8(2):114-126. (In Russ.) https://doi.org/10.31549/2542-1174-2024-8-2-114-126

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)