MicroRNA expression profile in the diagnostic substrate of primary cutaneous T cell non-Hodgkin’s lymphoma
https://doi.org/10.31549/2542-1174-2024-8-4-116-129
Abstract
I n t r o d u c t i o n . Primary cutaneous T cell lymphomas (CTCL) are a heterogeneous group of extranodal nonHodgkin’s lymphomas that are locally limited to the skin at diagnosis. The diagnosis of CTCL is often diffi cult, since at certain stages of development, this hematological malignancy has clinical similarities with non-neoplastic dermatological diseases such as chronic eczematous dermatitis, psoriasis, lichen ruber, or fungal infections. Both genetic and epigenetic factors, in particular microRNAs (miRNAs), are involved in the pathogenesis of CTCL.
A i m . To identify the miRNAs that diff erentiate CTCL from benign skin lesions (BSL) and determine their role in genetic pathways involved in the development of CTCL.
M a t e r i a l s a n d m e t h o d s . Real-time reverse transcription PCR was used to analyze the expression levels of miRNA-181a, -155, -574, -148b, -191, -26a, -21, -124, -221, -200b, -20a, -92a, -145, let-7a, and let-7d in 5 formalin-fi xed paraffi n-embedded skin biopsy samples from patients with CTCL and 20 skin biopsy samples from patients with psoriasis (control group).
R e s u l t s . Comparative analysis of miRNA expression levels between CTCL and BSL samples showed a statistically signifi cant increase in the levels of miRNA-181a, -155, -574, -148b and -191 in tumor samples (p < 0.05). ROC analysis showed that miRNA-155 and miRNA-181a are highly sensitive and specifi c markers for the diagnosis of CTCL.
C o n c l u s i o n . Analysis of miRNA expression levels may be a promising tool for the diff erential diagnosis between dermatotropic lymphoid hematological malignancies and non-hematological skin diseases.
About the Authors
Yu A. VeryaskinaRussian Federation
Yulia A. Veryaskina – Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Genetics
8/2, Acad. Lavrentiev Ave., Novosibirsk, 630090
I. B. Kovynev
Russian Federation
Igor B. Kovynev – Dr. Sci. (Med.), Associate Professor, Department of Therapy, Hematology and Transfusiology
Novosibirsk
V. V. Pakhomova
Russian Federation
Vera V. Pakhomova – Deputy Chief Physician for Medical Affairs, Dermatovenereologist
Novosibirsk
S. E. Titov
Russian Federation
Sergey E. Titov – Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Genetics; Senior Researcher
Novosibirsk
M. S. Voitko
Russian Federation
Maria S. Voitko – Cand. Sci. (Med.), Assistant Professor, Department of Therapy, Hematology and Transfusiology
Novosibirsk
K. S. Tsigulev
Russian Federation
Konstantin S. Tsigulev – 6-year Student
Novosibirsk
V. V. Onipchenko
Russian Federation
Vera V. Onipchenko – Chief Non-staff Specialist on Dermatovenereology and Cosmetology of the Novosibirsk Region, Chief Physician
Novosibirsk
References
1. Dobos G., Pohrt A., Ram-Wolff C. et al. Epidemiology of cutaneous T-cell lymphomas: a systematic review and meta-analysis of 16,953 patients // Cancers (Basel). 2020;12(10):2921. DOI: 10.3390/cancers12102921.
2. Hristov A.C., Tejasvi T., Wilcox R.A. Cutaneous T-cell lymphomas: 2023 update on diagnosis, riskstratifi cation, and management // Am. J. Hematol. 2023;98(1):193-209. DOI: 10.1002/ajh.26760.
3. Brunner P.M., Jonak C., Knobler R. Recent advances in understanding and managing cutaneous T-cell lymphomas // F1000Res. 2020;9(F1000 Faculty Rev):331. DOI: 10.12688/f1000research.21922.1.
4. Sokołowska-Wojdyło M., Olek-Hrab K., RuckemannDziurdzińska K. Primary cutaneous lymphomas: diagnosis and treatment // Postępy Dermatol. Alergol. 2015;32(5):368-383. DOI: 10.5114/pdia.2015.54749.
5. Litvinov I.V., Tetzlaff M.T., Thibault P. et al. Gene expression analysis in Cutaneous T-Cell Lymphomas (CTCL) highlights disease heterogeneity and potential diagnostic and prognostic indicators // Oncoimmunology. 2017;6(5):e1306618. DOI: 10.1080/2162402X.2017.1306618.
6. Scott J., Lai C., Coltart G. et al. Coexistence of psoriasis and cutaneous T-cell lymphoma // Clin. Exp. Dermatol. 2023;48(10):1155-1159. DOI: 10.1093/ced/llad213.
7. Choi J., Goh G., Walradt T. et al. Genomic landscape of cutaneous T cell lymphoma // Nat. Genet. 2015;47(9):1011-1019. DOI: 10.1038/ng.3356.
8. Park J., Daniels J., Wartewig T. et al. Integrated genomic analyses of cutaneous T-cell lymphomas reveal the molecular bases for disease heterogeneity // Blood. 2021;138(14):1225-1236. DOI: 10.1182/blood.2020009655.
9. Zhang Y., Wang Y., Yu R. et al. Molecular markers of early-stage mycosis fungoides // J. Invest. Dermatol. 2012;132(6):1698-1706. DOI: 10.1038/jid.2012.13.
10. Nebozhyn M., Loboda A., Kari L. et al. Quantitative PCR on 5 genes reliably identifi es CTCL patients with 5% to 99% circulating tumor cells with 90% accuracy // Blood. 2006;107(8):3189-3196. DOI: 10.1182/blood2005-07-2813.
11. Rassek K., Iżykowska K., Żurawek M. et al. TMEM244 gene expression as a potential blood diagnostic marker distinguishing Sézary syndrome from mycosis fungoides and benign erythroderma // J. Invest. Dermatol. 2023;143(2):344-347.e3. DOI: 10.1016/j.jid.2022.08.046.
12. Tensen C.P., Quint K.D., Vermeer M.H. Genetic and epigenetic insights into cutaneous T-cell lymphoma // Blood. 2022;139(1):15-33. DOI: 10.1182/blood.2019004256.
13. Zhang P., Zhang M. Epigenetics in the pathogenesis and treatment of cutaneous T-cell lymphoma // Front. Oncol. 2021;11:663961. DOI: 10.3389/fonc.2021.663961.
14. Ralfkiaer U., Lindahl L.M., Litman T. et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma // Anticancer Res. 2014;34(12):72077217. Erratum in: Anticancer Res. 2015;35(2):1219.
15. Dusílková N., Bašová P., Polívka J. et al. Plasma miR-155, miR-203, and miR-205 are biomarkers for monitoring of primary cutaneous T-cell lymphomas// Int. J. Mol. Sci. 2017;18(10):2136. DOI: 10.3390/ijms18102136.
16. Ralfkiaer U., Hagedorn P.H., Bangsgaard N. et al. Diagnostic microRNA profi ling in cutaneous T-cell lymphoma (CTCL) // Blood. 2011;118(22):5891-5900. DOI: 10.1182/blood-2011-06-358382.
17. Kotaki R., Koyama-Nasu R., Yamakawa N., Kotani A. miRNAs in normal and malignant hematopoiesis // Int. J. Mol. Sci. 2017;18(7):1495. DOI: 10.3390/ijms18071495.
18. Georgantas R.W. 3rd, Hildreth R., Morisot S. et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control // Proc. Natl. Acad. Sci. USA. 2007;104(8):2750-2755. DOI: 10.1073/pnas.0610983104.
19. Figueroa A.A., Fasano J.D., Martinez-Morilla S. et al. miR-181a regulates erythroid enucleation via the regulation of Xpo7 expression // Haematologica. 2018;103(8):e341-e344. DOI: 10.3324/haematol.2017.171785.
20. Rodriguez A., Vigorito E., Clare S. et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608-611. DOI: 10.1126/science.1139253.
21. Rodriguez A., Vigorito E., Clare S. et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608-611. DOI: 10.1126/science.1139253.
22. Seddiki N., Brezar V., Ruffi n N. et al. Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology. 2014;142(1):32-38. DOI: 10.1111/imm.12227.
23. Tan L.P., Wang M., Robertus J.L. et al. miRNA profi ling of B-cell subsets: specifi c miRNA profi le for germinal center B cells with variation between centroblasts and centrocytes. Lab. Invest. 2009;89(6):708-716. DOI: 10.1038/labinvest.2009.26.
24. Grigoryev Y.A., Kurian S.M., Hart T. et al. MicroRNA regulation of molecular networks mapped by global microRNA, mRNA, and protein expression in activated T lymphocytes. J. Immunol. 2011;187(5):2233-2243. DOI: 10.4049/jimmunol.1101233.
25. Wu H., Neilson J.R., Kumar P. miRNA profi ling of naïve, eff ector and memory CD8 T cells. PLoS One. 2007;2(10):e1020. DOI: 10.1371/journal.pone.0001020.
26. Li Q.J., Chau J., Ebert P.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129(1):147-161. DOI: 10.1016/j.cell.2007.03.008.
27. Dudda J.C., Salaun B., Ji Y. et al. MicroRNA-155 is required for eff ector CD8+ T cell responses to virus infection and cancer. Immunity. 2013;38(4):742-753. DOI: 10.1016/j.immuni.2012.12.006.
28. Kim C., Ye Z., Weyand C.M., Goronzy J.J. miR-181aregulated pathways in T-cell diff erentiation and aging. Immun. Ageing. 2021;18(1):28. DOI: 10.1186/s12979021-00240-1.
29. Ben-Hamo R., Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget. 2015;6(3):15941604. DOI: 10.18632/oncotarget.2734.
30. Macfarlane L.A., Murphy P.R. MicroRNA: biogenesis, function and role in cancer. Curr. Genomics. 2010;11(7):537-561. DOI: 10.2174/138920210793175895.
31. Luongo F., Colonna F., Calapà F. et al. PTEN tumorsuppressor: the dam of stemness in cancer. Cancers (Basel). 2019;11(8):1076. DOI: 10.3390/cancers11081076.
32. Wang X., Huang H., Young K.H. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis. Aging (Albany NY). 2015;7(12):1032-1049. DOI: 10.18632/aging.100855.
33. Luchtel R.A. ETS1 function in leukemia and lymphoma. Adv. Exp. Med. Biol. 2024;1459:359-378. DOI: 10.1007/978-3-031-62731-6_16.
34. Carpenter R.L., Lo H.W. STAT3 target genes relevant to human cancers. Cancers (Basel). 2014;6(2):897925. DOI: 10.3390/cancers6020897.
35. Zhu F., Wang K.B., Rui L. STAT3 activation and oncogenesis in lymphoma. Cancers (Basel). 2019;12(1):19. DOI: 10.3390/cancers12010019.
36. Sommer V.H., Clemmensen O.J., Nielsen O. et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia. 2004;18(7):1288-1295. DOI: 10.1038/sj.leu.2403385.
37. Sibbesen N.A., Kopp K.L., Litvinov I.V. et al. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget. 2015;6(24):2055520569. DOI: 10.18632/oncotarget.4111.
38. Rendón-Serna N., Correa-Londoño L.A., Velásquez-Lopera M.M., Bermudez-Muñoz M. Cell signaling in cutaneous T-cell lymphoma microenvironment: promising targets for molecular-specifi c treatment // Int. J. Dermatol. 2021;60(12):1462-1480. DOI: 10.1111/ijd.15451.
39. Sun Z., Yao X., Ding X. et al. MicroRNAs and their signaling pathway in mycosis fungoides. Medicine (Baltimore). 2022;101(25):e29248. DOI: 10.1097/MD.0000000000029248.
40. Solé C., Arnaiz E., Lawrie C.H. MicroRNAs as biomarkers of B-cell lymphoma. Biomark. Insights. 2018;13:1177271918806840. DOI: 10.1177/1177271918806840.
41. Talaat I.M., Abdelmaksoud R.E., Guimei M. et al. Potential role for microRNA-16 (miR-16) and microRNA-93 (miR-93) in diagnosis and prediction of disease progression in mycosis fungoides in Egyptian patients. PLoS One. 2019;14(10):e0224305. DOI: 10.1371/journal.pone.0224305.
42. Sørensen S.T., Litman T., Gluud M. et al. miRNA signature in early-stage mycosis fungoides. Acta Derm. Venereol. 2022;102:adv00785. DOI: 10.2340/actadv. v102.628.
43. Shen X., Wang B., Li K. et al. MicroRNA signatures in diagnosis and prognosis of cutaneous T-cell lymphoma. J. Invest. Dermatol. 2018;138(9):2024-2032. DOI: 10.1016/j.jid.2018.03.1500.
Review
For citations:
Veryaskina Yu.A., Kovynev I.B., Pakhomova V.V., Titov S.E., Voitko M.S., Tsigulev K.S., Onipchenko V.V. MicroRNA expression profile in the diagnostic substrate of primary cutaneous T cell non-Hodgkin’s lymphoma. Journal of Siberian Medical Sciences. 2024;8(4):116-129. (In Russ.) https://doi.org/10.31549/2542-1174-2024-8-4-116-129