Preview

Journal of Siberian Medical Sciences

Расширенный поиск

Возможности прогнозирования функциональных исходов ишемического инсульта

https://doi.org/10.31549/2542-1174-2025-9-1-98-123

Аннотация

Инсульт занимает лидирующие позиции среди причин инвалидности и смертности. Прогнозирование функциональных исходов инсульта потенциально способно повысить эффективность ведения пациентов, оптимизировать стратегии оказания медицинской помощи и реабилитационных мероприятий с учетом рационализации использования ресурсов. На сегодняшний день отсутствуют инструменты быстрой и комплексной оценки прогноза для принятия врачом своевременного решения о выборе наиболее подходящей и перспективной для каждого пациента тактики ведения, что требует систематизации известных данных по прогнозированию исходов инсульта для возможности дальнейшей оптимизации этого процесса. Нами были изучены существующие возможности прогнозирования функциональных исходов ишемического инсульта на платформах PubMed, Scopus, eLIBRARY, Cyberleninka, проанализированы их достоинства и недостатки.

Об авторах

Т. А. Шустова
ФГБУ «Национальный медицинский исследовательский центр имени В.А. Алмазова» Минздрава России
Россия

Шустова Татьяна Алексеевна – аспирант, старший лаборант кафедры неврологии с клиникой Института медицинского образования

 197341, г. Санкт-Петербург, ул. Аккуратова, 2 



М. П. Топузова
ФГБУ «Национальный медицинский исследовательский центр имени В.А. Алмазова» Минздрава России
Россия

Топузова Мария Петровна – канд. мед. наук, доцент кафедры неврологии с клиникой Института медицинского образования 

Санкт-Петербург



А. А. Сыкыкова
ФГБУ «Национальный медицинский исследовательский центр имени В.А. Алмазова» Минздрава России
Россия

Сыкыкова Арунай Аркадьевна – студентка Института медицинского образования  

Санкт-Петербург



П. А. Григорьева
ФГБУ «Национальный медицинский исследовательский центр имени В.А. Алмазова» Минздрава России
Россия

Григорьева Полина Алексеевна – студентка Института медицинского образования 

Санкт-Петербург



Т. М. Алексеева
ФГБУ «Национальный медицинский исследовательский центр имени В.А. Алмазова» Минздрава России
Россия

Алексеева Татьяна Михайловна – д-р мед. наук, профессор, заведующий кафедрой неврологии с клиникой Института медицинского образования

Санкт-Петербург 



Список литературы

1. Puzio M., Moreton N., O’Connor J.J. Neuroprotective strategies for acute ischemic stroke: targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling // Brain Disorders. 2022;5(5):100030. DOI: 10.1016/S1474-4422(16)00114-9.

2. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 // Lancet. Neurol. 2021;20(10):795-820. DOI: 10.1016/S1474-4422(21)00252-0.

3. Heller R.F., Langhorne P., James E. Improving stroke outcome: the benefits of increasing availability of technology // Bull. World Health Organ. 2000;78:1337-1343.

4. Игнатьева В.И., Вознюк И.А., Шамалов Н.А. и др. Социально-экономическое бремя инсульта в Российской Федерации // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023;123(8-2):5-15. DOI: 10.17116/jnevro20231230825.

5. Anderson C.S., Carter K.N., Brownlee W.J. et al. Very long-term outcome after stroke in Auckland, New Zealand // Stroke. 2004;35(8):1920-1924. DOI: 10.1161/01.STR.0000133130.20322.9f.

6. Zhu L., Fratiglioni L., Guo Z. et al. Association of stroke with dementia, cognitive impairment, and functional disability in the very old: a populationbased study // Stroke. 1998;29(10):2094-2099. DOI: 10.1161/01.str.29.10.2094.

7. Jiang X., Morgenstern L.B., Cigolle C.T. et al. Multiple chronic conditions and functional outcome after ischemic stroke: a systematic review and meta-analysis // Neuroepidemiology. 2020;54(3):205-213. DOI: 10.1159/000503900.

8. Chang W.H., Sohn M.K., Lee J. et al. Predictors of functional level and quality of life at 6 months after a first-ever stroke: the KOSCO study // J. Neurol. 2016;263(6):1166- 1177. DOI: 10.1007/s00415-016-8119-y.

9. Кулеш С.Д., Филина Н.А., Костиневич Т.М. и др. Долгосрочные исходы мозгового инсульта в крупной городской популяции Беларуси // Вестник Витебского государственного медицинского университета. 2011;10(3):93-101

10. Ntaios G., Lambrou D., Michel P. Blood pressure changes in acute ischemic stroke and outcome with respect to stroke etiology // Neurology. 2012;79(14):1440-1448. DOI: 10.1212/WNL.0b013e31826d5ed6.

11. Robinson T., Waddington A., Ward-Close S. et al. The predictive role of 24-hour compared to casual blood pressure levels on outcome following acute stroke // Cerebrovasc. Dis. 1997;7(5):264-272. DOI: 10.1159/000108206.

12. Tsivgoulis G., Spengos K., Zakopoulos N. et al. Twenty four hour pulse pressure predicts long term recurrence in acute stroke patients // J. Neurol. Neurosurg. Psychiatry. 2005;76(10):1360-1365. DOI: 10.1136/jnnp.2004.057265.

13. Chen Y., Ma Y., Qin J. et al. Blood pressure variability predicts poor outcomes in acute stroke patients without thrombolysis: A systematic review and metaanalysis // J. Neurol. 2024;271(3):1160-1169. DOI: 10.1007/s00415-023-12054-w.

14. Jia Q., Zhao X., Wang C. et al. Diabetes and poor outcomes within 6 months after acute ischemic stroke: the China National Stroke Registry // Stroke. 2011;42(10):2758-2762. DOI: 10.1161/STROKEAHA.111.621649.

15. Tanaka R., Ueno Y., Miyamoto N. et al. Impact of diabetes and prediabetes on the short-term prognosis in patients with acute ischemic stroke // J. Neurol. Sci. 2013;332(1-2):45-50. DOI: 10.1016/j.jns.2013.06.010.

16. Tuttolomondo A., Pinto A., Salemi G. et al. Diabetic and non-diabetic subjects with ischemic stroke: differences, subtype distribution and outcome // Nutr. Metab. Cardiovasc. Dis. 2008;18(2):152-157. DOI: 10.1016/j.numecd.2007.02.003.

17. Zhang L., Li X., Wolfe C.D.A. et al. Diabetes as an independent risk factor for stroke recurrence in ischemic stroke patients: an updated meta-analysis // Neuroepidemiology. 2021;55(6):427-435. DOI: 10.1159/000519327.

18. Olaiya M.T., Cadilhac D.A., Kim J. et al. Quality of care and one-year outcomes in patients with diabetes hospitalised for stroke or TIA: a linked registry study // J. Stroke Cerebrovasc. Dis. 2021;30(11):106083. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106083.

19. Echouffo-Tcheugui J.B., Xu H., Matsouaka R.A. et al. Diabetes and long-term outcomes of ischaemic stroke: findings from Get With The Guidelines-Stroke // Eur. Heart J. 2018;39(25):2376-2386. DOI: 10.1093/eurheartj/ehy036.

20. Fonarow G.C., Reeves M.J., Zhao X. et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke // Circulation. 2010;121(7):879-891. DOI: 10.1161/CIRCULATIONAHA.109.892497.

21. Palnum K.D., Petersen P., Sørensen H.T. et al. Older patients with acute stroke in Denmark: quality of care and short-term mortality. A nationwide followup study // Age Ageing. 2008;37(1):90-95. DOI: 10.1093/ageing/afm134.

22. Yoo J.W., Hong B.Y., Jo L. et al. Effects of age on longterm functional recovery in patients with stroke // Medicina (Kaunas). 2020;56(9):451. DOI: 10.3390/medicina56090451.

23. Ohya Y., Matsuo R., Sato N. et al. Modification of the effects of age on clinical outcomes through management of lifestyle-related factors in patients with acute ischemic stroke // J. Neurol. Sci. 2023;446:120589. DOI: 10.1016/j.jns.2023.120589.

24. Beuker C., Köppe J., Feld J. et al. Association of age with 1-year outcome in patients with acute ischaemic stroke treated with thrombectomy: real-world analysis in 18 506 patients // J. Neurol. Neurosurg. Psychiatry. 2023;94(8):631-637. DOI: 10.1136/jnnp-2022-330506.

25. Kimura K., Minematsu K., Yamaguchi T. Atrial fibrillation as a predictive factor for severe stroke and early death in 15 831 patients with acute ischaemic stroke // J. Neurol. Neurosurg. Psychiatry. 2005;76(5):679- 683. DOI: 10.1136/jnnp.2004.048827.

26. Sandercock P., Bamford J., Dennis M. et al. Atrial fibrillation and stroke: prevalence in different types of stroke and influence on early and long term prognosis (Oxfordshire community stroke project) // BMJ. 1992;305(6867):1460-1465. DOI: 10.1136/bmj.305.6867.1460.

27. Lin H.J., Wolf P.A., Kelly-Hayes M. et al. Stroke severity in atrial fibrillation: the Framingham Study // Stroke. 1996;27(10):1760-1764. DOI: 10.1161/01.str.27.10.1760.

28. Tracz J., Gorczyca-Głowacka I., Rosołowska A., Wożakowska-Kapłon B. Long-term outcomes after stroke in patients with atrial fibrillation: a single center study // Int. J. Environ. Res. Public Health. 2023;20(4):3491. DOI: 10.3390/ijerph20043491.

29. Tu H.T., Campbell B.C., Christensen S. et al. Worse stroke outcome in atrial fibrillation is explained by more severe hypoperfusion, infarct growth, and hemorrhagic transformation // Int. J. Stroke. 2015;10(4):534-540. DOI: 10.1111/ijs.12007.

30. Adams H.P. Jr., Davis P.H., Leira E.C. et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST) // Neurology. 1999;53(1):126-131. DOI: 10.1212/wnl.53.1.126.

31. Lyden P.D., Lu M., Levine S.R. et al. A modified National Institutes of Health Stroke Scale for use in stroke clinical trials: preliminary reliability and vali dity // Stroke. 2001;32(6):1310-1317. DOI: 10.1161/01.str.32.6.1310.

32. Rost N.S., Bottle A., Lee J.M. et al. Stroke severity is a crucial predictor of outcome: An international prospective validation study // J. Am. Heart Assoc. 2016;5(1):e002433. DOI: 10.1161/ JAHA.115.002433.

33. Du J., Wang Y., Che B. et al. The relationship between neurological function trajectory, assessed by repeated NIHSS measurement, and long-term cardiovascular events, recurrent stroke, and mortality after ischemic stroke // Int. J. Stroke. 2023;18(8):1005-1014. DOI: 10.1177/17474930231180446.

34. Kasner S.E. Clinical interpretation and use of stroke scales // Lancet. Neurol. 2006;5(7):603-612. DOI: 10.1016/S1474-4422(06)70495-1.

35. Chung J.W., Park S.H., Kim N. et al. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification and vascular territory of ischemic stroke lesions diagnosed by diffusion-weighted imaging // J. Am. Heart Assoc. 2014;3:e001119. DOI: 10.1161/JAHA.114.001119.

36. Woo D., Broderick J.P., Kothari R.U. et al. Does the National Institutes of Health Stroke Scale favor left hemisphere strokes? NINDS t-PA Stroke Study Group // Stroke. 1999;30(11):2355–2359. DOI: 10.1161/01.str.30.11.2355.

37. Sato S., Toyoda K., Uehara T. et al. Baseline NIH Stroke Scale Score predicting outcome in anterior and posterior circulation strokes // Neurology. 2008;70(24 Pt 2):2371–2377. DOI: 10.1212/01.wnl.0000304346.14354.0b.

38. Yang Y., Wang A., Zhao X. et al. The Oxfordshire Community Stroke Project classification system predicts clinical outcomes following intravenous thrombolysis: A prospective cohort study // Ther. Clin. Risk Manag. 2016;12:1049–1056. DOI: 10.2147/TCRM. S107053. PMID: 27418829.

39. Fink J.N., Selim M.H., Kumar S. et al. Is the association of National Institutes of Health Stroke Scale scores and acute magnetic resonance imaging stroke volume equal for patients with right- and left-hemisphere ischemic stroke? // Stroke. 2002;33(4):954- 958. DOI: 10.1161/01.str.0000013069.24300.1d.

40. Quinn T.J., Dawson J., Walters M.R., Lees K.R. Functional outcome measures in contemporary stroke trials // Int. J. Stroke. 2009;4(3):200-205. DOI: 10.1111/j.1747-4949.2009.00271.x.

41. Sangha H., Lipson D., Foley N. et al. A comparison of the Barthel Index and the Functional Independence Measure as outcome measures in stroke rehabilitation: patterns of disability scale usage in clinical trials // Int. J. Rehabil. Res. 2005;28(2):135-139. DOI: 10.1097/00004356-200506000-00006.

42. Granger C.V., Hamilton B.B., Gresham G.E. The stroke rehabilitation outcome study – Part I: general description // Arch. Phys. Med. Rehabil. 1988;69(7):506-509.

43. Musa K.I., Keegan T.J. The change of Barthel Index scores from the time of discharge until 3-month post-discharge among acute stroke patients in Malaysia: A random intercept model // PLoS One. 2018;13(12):e0208594. DOI: 10.1371/journal.pone.0208594.

44. Nazzal M., Sa’adah M.A., Al-Ansari D. et al. Stroke rehabilitation: application and analysis of the modified Barthel index in an Arab community // Disabil. Rehabil. 2001;23(1):36-42. DOI: 10.1080/09638280150211284.

45. van der Putten J.J., Hobart J.C., Freeman J.A., Thompson A.J. Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the Barthel index and the Functional Independence Measure // J. Neurol. Neurosurg. Psychiatry. 1999;66(4):480-484. DOI: 10.1136/ jnnp.66.4.480.

46. Koyama T., Matsumoto K., Okuno T., Domen K. Relationships between independence level of single motor-FIM items and FIM-motor scores in patients with hemiplegia after stroke: an ordinal logistic modelling study // J. Rehabil. Med. 2006;38(5):280-286. DOI: 10.1080/16501970600731420.

47. Dromerick A.W., Edwards D.F., Diringer M.N. Sensitivity to changes in disability after stroke: a comparison of four scales useful in clinical trials // J. Rehabil. Res. Dev. 2003;40(1):1-8. DOI: 10.1682/jrrd.2003.01.0001.

48. Wallace D., Duncan P.W., Lai S.M. Comparison of the responsiveness of the Barthel Index and the motor component of the Functional Independence Measure in stroke: the impact of using different methods for measuring responsiveness // J. Clin. Epidemiol. 2002;55(9):922-928. DOI: 10.1016/s0895-4356(02)00410-9.

49. Hsueh I.P., Lin J.H., Jeng J.S., Hsieh C.L. Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke // J. Neurol. Neurosurg. Psychiatry. 2002;73(2):188- 190. DOI: 10.1136/jnnp.73.2.188.

50. Chumney D., Nollinger K., Shesko K. et al. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: systematic review // J. Rehabil. Res. Dev. 2010;47(1):17-29. DOI: 10.1682/jrrd.2009.08.0140.

51. Wilson J.T., Hareendran A., Grant M. et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin Scale // Stroke. 2002;33(9):2243-2246. DOI: 10.1161/01.str.0000027437.22450.bd.

52. Wilson J.T., Hareendran A., Hendry A. et al. Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview // Stroke. 2005;36(4):777-781. DOI: 10.1161/01.STR.0000157596.13234.95.

53. Demchuk A.M., Tanne D., Hill M.D. et al. Predictors of good outcome after intravenous tPA for acute ischemic stroke // Neurology. 2001;57(3):474-480. DOI: 10.1212/wnl.57.3.474.

54. Kwon S., Hartzema A.G., Duncan P.W., MinLai S. Disability measures in stroke: relationship among the Barthel Index, the Functional Independence Measure, and the Modified Rankin Scale // Stroke. 2004;35(4):918-923. DOI: 10.1161/01.STR.0000119385.56094.32.

55. Chen S., You J., Yang X. et al. Machine learning is an effective method to predict the 90-day prognosis of patients with transient ischemic attack and minor stroke // BMC Med. Res. Methodol. 2022;22(1):195. DOI: 10.1186/s12874-022-01672-z.

56. Zhang M.Y., Mlynash M., Sainani K.L. et al. Ordinal prediction model of 90-day modified Rankin scale in ischemic stroke // Front. Neurol. 2021;12:727171. DOI: 10.3389/fneur.2021.727171.

57. Rabinstein A.A. Update on treatment of acute ischemic stroke // Continuum (Minneap. Minn.). 2020;26(2):268-286. DOI: 10.1212/ CON.0000000000000840.

58. Osama S., Zafar K., Sadiq M.U. Predicting clinical outcome in acute ischemic stroke using parallel multi-parametric feature embedded siamese network // Diagnostics (Basel). 2020;10(11):858. DOI: 10.3390/diagnostics10110858.

59. Gatenby R.A., Grove O., Gillies R.J. Quantitative imaging in cancer evolution and ecology // Radiology. 2013;269(1):8-15. DOI: 10.1148/radiol.13122697.

60. Wong K.K., Cummock J.S., Li G. et al. Automatic segmentation in acute ischemic stroke: prognostic significance of topological stroke volumes on stroke outcome // Stroke. 2022;53(9):2896-2905. DOI: 10.1161/STROKEAHA.121.037982.

61. Moulton E., Valabregue R., Piotin M. et al. Interpretable deep learning for the prognosis of longterm functional outcome post-stroke using acute diffusion weighted imaging // J. Cereb. Blood Flow Metab. 2023;43(2):198-209. DOI: 10.1177/0271678X221129230.

62. Yoo A.J., Barak E.R., Copen W.A. et al. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with National Institutes of Health Stroke Scale Score improves the prediction of acute stroke outcome // Stroke. 2010;41(8):1728- 1735. DOI: 10.1161/STROKEAHA.110.582874.

63. Johnston K.C., Wagner D.P., Haley E.C. Jr. et al. Combined clinical and imaging information as an early stroke outcome measure // Stroke. 2002;33(2):466- 472. DOI: 10.1161/hs0202.102881.

64. Vogt G., Laage R., Shuaib A. et al. Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: an analysis of the Virtual International Stroke Trials Archive (VISTA) database // Stroke. 2012;43(5):1266-1272. DOI: 10.1161/STROKEAHA.111.646570.

65. Yoo A.J., Chaudhry Z.A., Nogueira R.G. et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy // Stroke. 2012;43(5):1323-1330. DOI: 10.1161/STROKEAHA.111.639401.

66. Beare R., Chen J., Phan T.G. et al. Googling stroke ASPECTS to determine disability: exploratory analysis from VISTA-acute Collaboration // PLoS One. 2015;10(5):e0125687. DOI: 10.1371/journal.pone.0125687.

67. Menon B.K., Puetz V., Kochar P., Demchuk A.M. ASPECTS and other neuroimaging scores in the triage and prediction of outcome in acute stroke patients // Neuroimaging Clin. N. Am. 2011;21(2):407-423. DOI: 10.1016/j.nic.2011.01.007.

68. Phan T.G., Demchuk A., Srikanth V. et al. Proof of concept study: relating infarct location to stroke disability in the NINDS rt-PA trial // Cerebrovasc. Dis. 2013;35(6):560-565. DOI: 10.1159/000351147.

69. Rangaraju S., Streib C., Aghaebrahim A. et al. Relationship between lesion topology and clinical outcome in anterior circulation large vessel occlusions // Stroke. 2015;46(7):1787-1792. DOI: 10.1161/STROKEAHA.115.009908.

70. Goto A., Okuda S., Ito S. et al. Locomotion outcome in hemiplegic patients with middle cerebral artery infarction: the difference between right- and left-sided lesions // J. Stroke Cerebrovasc. Dis. 2009;18(1):60-67. DOI: 10.1016/j.jstrokecerebrovasdis.2008.09.003.

71. Johnston K.C., Wagner D.P., Wang X.Q. et al. Validation of an acute ischemic stroke model: does diffusion-weighted imaging lesion volume offer a clinically significant improvement in prediction of outcome? // Stroke. 2007;38(6):1820-1825. DOI: 10.1161/STROKEAHA.106.479154.

72. Puig J., Pedraza S., Blasco G. et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke // AJNR Am. J. Neuroradiol. 2011;32(5):857-863. DOI: 10.3174/ajnr.A2400.

73. Lansberg M.G., O’Brien M.W., Tong D.C. et al. Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging // Arch. Neurol. 2001;58(4):613-617. DOI: 10.1001/archneur.58.4.613.

74. Lu W.Z., Lin H.A., Bai C.H., Lin S.F. Posterior circulation acute stroke prognosis early CT scores in predicting functional outcomes: A meta-analysis // PLoS One. 2021;16(2):e0246906. DOI: 10.1371/journal.pone.0246906.

75. Lin S.F., Chen C.I., Hu H.H., Bai C.H. Predicting functional outcomes of posterior circulation acute ischemic stroke in first 36 h of stroke onset // J. Neurol. 2018;265(4):926-932. DOI: 10.1007/s00415-018-8746-6.

76. Castellanos M., Leira R., Serena J. et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke // Stroke. 2003;34(1):40-46.

77. Foerch C., Otto B., Singer O.C. et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion // Stroke. 2004;35(9):2160-2164. DOI: 10.1161/01. STR.0000138730.03264.ac.

78. Thanvi B., Treadwell S., Robinson T. Early neurological deterioration in acute ischaemic stroke: predictors, mechanisms and management // Postgrad. Med. J. 2008; 84(994):412-417. DOI: 10.1136/pgmj.2007.066118.

79. Castillo J. Deteriorating stroke: Diagnostic criteria, predictors, mechanisms and treatment // Cerebrovasc. Dis. 1999;9 Suppl. 3:1-8. DOI: 10.1159/000047548.

80. Castellanos M., Sobrino T., Pedraza S. et al. High plasma glutamate concentrations are associated with infarct growth in acute ischemic stroke // Neurology. 2008;71(23):1862-1868. DOI: 10.1212/01.wnl.0000326064.42186.7e.

81. Dávalos A., Castillo J., Marrugat J. et al. Body iron stores and early neurologic deterioration in acute cerebral infarction // Neurology. 2000;54(8):1568- 1574. DOI: 10.1212/wnl.54.8.1568.

82. Castellanos M., Castillo J., García M.M. et al. Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target // Stroke. 2002;33(4):982-987. DOI: 10.1161/hs0402.105339.

83. Woodward M., Lowe G.D., Campbell D.J. et al. Associations of inflammatory and hemostatic variables with the risk of recurrent stroke // Stroke. 2005;36(10):2143-2147. DOI: 10.1161/01. STR.0000181754.38408.4c.

84. Elkind M.S., Luna J.M., McClure L.A. et al. C-reactive protein as a prognostic marker after lacunar stroke: levels of inflammatory markers in the treatment of stroke study // Stroke. 2014;45(3):707-716. DOI: 10.1161/STROKEAHA.113.004562.

85. Welsh P., Lowe G.D., Chalmers J. et al. Associations of proinflammatory cytokines with the risk of recurrent stroke // Stroke. 2008;39(8):2226-2230. DOI: 10.1161/STROKEAHA.107.504498.

86. Elkind M.S., Tai W., Coates K. et al. Lipoprotein-associated phospholipase A2 activity and risk of recurrent stroke // Cerebrovasc. Dis. 2009;27(1):42-50. DOI: 10.1159/000172633.

87. Ganz P., Amarenco P., Goldstein L.B. et al. Association of osteopontin, neopterin, and myeloperoxidase with stroke risk in patients with prior stroke or transient ischemic attacks: results of an analysis of 13 biomarkers from the Stroke Prevention by Aggressive Reduction in Cholesterol Levels Trial // Stroke. 2017;48(12):3223-3231. DOI: 10.1161/STROKEAHA.117.017965.

88. Zhang Z.G., Wang C., Wang J. et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke // Mol. Neurobiol. 2015;51(1):230-239. DOI: 10.1007/s12035-014-8682-0.

89. Tu W.J., Zhao S.J., Xu D.J., Chen H. Serum 25-hydroxyvitamin D predicts the short-term outcomes of Chinese patients with acute ischaemic stroke // Clin. Sci. (Lond.). 2014;126(5):339-346. DOI: 10.1042/CS20130284.

90. Lattuca B., Sy V., Nguyen L.S. et al. Copeptin as a prognostic biomarker in acute myocardial infarction // Int. J. Cardiol. 2019;274:337-341. DOI: 10.1016/j.ijcard.2018.09.022.

91. Katan M., Fluri F., Morgenthaler N.G. et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke // Ann. Neurol. 2009;66(6):799- 808. DOI: 10.1002/ana.21783.

92. De Marchis G.M., Katan M., Weck A. et al. Copeptin adds prognostic information after ischemic stroke: results from the CoRisk study // Neurology. 2013;80(14):1278-1286. DOI: 10.1212/WNL.0b013e3182887944.

93. Xie S., Lu L., Liu L. et al. Progranulin and short-term outcome in patients with acute ischaemic stroke // Eur. J. Neurol. 2016;23(3):648-655. DOI: 10.1111/ene.12920.

94. Zhu Y.Y., Zhang J.L., Liu L. et al. Evaluation of serum retinol-binding protein-4 levels as a biomarker of poor short-term prognosis in ischemic stroke // Biosci. Rep. 2018;38(5):BSR20180786. DOI: 10.1042/BSR20180786. PMID: 30038059.

95. Wang H., Cheng Y., Chen S. et al. Impact of elevated hemoglobin A1c levels on functional outcome in patients with acute ischemic stroke // J. Stroke Cerebrovasc. Dis. 2019;28(2):470-476. DOI: 10.1016/j.jstrokecerebrovasdis.2018.10.026.

96. Tiedt S., Duering M., Barro C. et al. Serum neu rofilament light: A biomarker of neuroaxo nal injury after ischemic stroke // Neurology. 2018;91(14):e1338-e1347. DOI: 10.1212/WNL.0000000000006282.

97. Oh S.H., Lee J.G., Na S.J. et al. Prediction of early clinical severity and extent of neuronal damage in anterior-circulation infarction using the initial serum neuron-specific enolase level // Arch. Neurol. 2003;60(1):37-41. DOI: 10.1001/archneur.60.1.37.

98. Goyal N., Tsivgoulis G., Chang J.J. et al. Admission neutrophil-to-lymphocyte ratio as a prognostic biomarker of outcomes in large vessel occlusion strokes // Stroke. 2018;49(8):1985-1987. DOI: 10.1161/STROKEAHA.118.021477. 99. Guo Z., Yu S., Xiao L. et al. Dynamic change of neutrophil to lymphocyte ratio and hemorrhagic transformation after thrombolysis in stroke // J. Neuroinflammation. 2016;13(1):199. DOI: 10.1186/s12974-016-0680-x.

99. Lee M., Kim C.H., Kim Y. et al. High triglyceride glucose index is associated with poor outcomes in ischemic stroke patients after reperfusion therapy // Cerebrovasc. Dis. 2021;50(6):691-699. DOI: 10.1159/000516950.

100. Miao M., Bi Y., Hao L. et al. Triglyceride-glucose index and short-term functional outcome and inhospital mortality in patients with ischemic stroke // Nutr. Metab. Cardiovasc. Dis. 2023;33(2):399-407. DOI: 10.1016/j.numecd.2022.11.004.

101. Евзельман М.А., Орлова А.Д., Лашхия Я.Б. и др. Прогностические маркеры исхода ишемического инсульта // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018;118(12-2):50-53. DOI: 10.17116/jnevro201811812250.

102. Flint A.C., Rao V.A., Chan S.L. et al. Improved ischemic stroke outcome prediction using model estimation of outcome probability: the THRIVE-c calculation // Int. J. Stroke. 2015;10(6):815-821. DOI: 10.1111/ijs.12529.

103. Myint P.K., Clark A.B., Kwok C.S. et al. The SOAR (Stroke subtype, Oxford Community Stroke Project classification, Age, prestroke modified Rankin) score strongly predicts early outcomes in acute stroke // Int. J. Stroke. 2014;9(3):278-283. DOI: 10.1111/ijs.12088.

104. Yang Y., Guo Y. Ischemic stroke outcome prediction with diversity features from whole brain tissue using deep learning network // Front. Neurol. 2024;15:1394879. DOI: 10.3389/fneur.2024.1394879.


Рецензия

Для цитирования:


Шустова Т.А., Топузова М.П., Сыкыкова А.А., Григорьева П.А., Алексеева Т.М. Возможности прогнозирования функциональных исходов ишемического инсульта. Journal of Siberian Medical Sciences. 2025;(1):98-123. https://doi.org/10.31549/2542-1174-2025-9-1-98-123

For citation:


Shustova T.A., Topuzova M.P., Sykykova A.A., Grigorieva P.A., Alekseeva T.M. Possibilities of predicting functional outcomes of ischemic stroke. Journal of Siberian Medical Sciences. 2025;(1):98-123. (In Russ.) https://doi.org/10.31549/2542-1174-2025-9-1-98-123

Просмотров: 27


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)