Preview

Journal of Siberian Medical Sciences

Advanced search

Role of ultrasound parameters and clinical anamnestic data in late-onset fetal growth restriction as potential risk factors for neonatal admission to the intensive care unit

https://doi.org/10.31549/2542-1174-2025-9-2-32-43

Abstract

I n t r o d u c t i o n . Fetal growth restriction (FGR) is one of the major obstetric syndromes which leads to a high incidence of neonatal admission to the intensive care unit (ICU). Timely delivery is the only method to improve perinatal outcomes. However, no predictors have yet been identified to determine the optimal timing and mode of delivery, conside ing an individualized approach.

A i m . To identify the relationship between clinical and anamnestic data, ultrasound parameters and neonatal ICU admission with late-onset FGR.

M a t e r i a l s a n d m e t h o d s . A continuous cohort study was carried out at the Perinatal Center of the Arkhangelsk Regional Clinical Hospital from 2018 to 2022. The sample included 314 women with suspected FGR. Multi-variate Poisson regression was used to assess the association between neonatal ICU admission and diferent variables, including ultrasound, clinical data, and medical data. Unadjusted and adjusted relative risks (RR) with 95% confidence intervals (CI) were also calculated.

R e s u l t s . In 111 cases, which are 35,4% of the total, late-onset FGR was detected. Of these, in 41 cases (36,9%), newborns subsequently required ICU admission. Four statistically significant risk factors were included in the parsimonious model. Abnormalities of the uterine artery pulsatility index (UtA PI) (RR = 1,28; 95% CI: 1,04–1,57), varicose veins of the lower extremities (RR = 1,90; 95% CI: 1,12–3,26) and recurrent FGR (RR = 1,67; 95% CI: 1,03–2,71) were associated with poor status of the newborn at birth. Changes in the umbilical artery pulsatility index (UmA PI) were associated with a lower risk of neonatal ICU admission (RR = 0,78; 95% CI: 0,61–0,99).

C o n c l u s i o n . Abnormal UtA PI values revealed during Doppler ultrasound examination, varicose vein disease in the mother, and recurrent FGR may have a predictive value for deciding on the timing and mode of delivery to improve perinatal outcomes. Abnormal UmA PI values were associated with a lower risk of neonatal ICU admission. It is necessary to reproduce the results in further larger multicenter studies to create valid models with appropriate levels of sensitivity and specificity for predicting perinatal complications.

About the Authors

E. A. Shcherbakova
Northern State Medical University
Russian Federation

Elizaveta A. Shcherbakova – Post-graduate Student, Department of Obstetrics and Gynecology

51, Troizkiy prosp., Arkhangelsk, 163069



N. G. Istomina
Northern State Medical University
Russian Federation

Natalia G. Istomina – Cand. Sci. (Med.), Associate Professor, Department of Obstetrics and Gynecology

51, Troizkiy prosp., Arkhangelsk, 163069



A. N. Baranov
Northern State Medical University
Russian Federation

Alexey N. Baranov – Dr. Sci. (Med.), Head, Department of Obstetrics and Gynecology

51, Troizkiy prosp., Arkhangelsk, 163069



A. M. Grjibovski
Northern State Medical University
Russian Federation

Andrey M. Grjibovski – MD, Head, Department of Scientifi c and Innovative Work

51, Troizkiy prosp., Arkhangelsk, 163069



References

1. Melamed N., Baschat A., Yinon Y. et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction // Int. J. Gynaecol. Obstet. 2021;152(1):3-57. DOI: 10.1002/ijgo.13522.

2. Rizzo G., Pietrolucci M.E., Mappa I. et al. Modeling gestational age centiles for fetal umbilicocerebral ratio by quantile regression analysis: a secondary analysis of a prospective cross-sectional study // J. Matern. Fetal Neonatal Med. 2022; 35(22):4381-4385. DOI: 10.1080/14767058.2020.1849123.

3. Visser L., van Buggenum H., van der Voorn J.P. et al. Maternal vascular malperfusion in spontaneous preterm birth placentas related to clinical outcome of subsequent pregnancy // J. Matern. Fetal Neonatal Med. 2021;34(17):2759-2764. DOI: 10.1080/14767058.2019.1670811.

4. Asúnsolo Á., Chaowen C., Ortega M.A. et al. Association between lower extremity venous insufficiency and intrapartum fetal compromise: a nationwide cross-sectional study // Front. Med. (Lausanne). 2021;8:577096. DOI: 10.3389/fmed.2021.577096.

5. Insufficient fetal growth that requires the provision of maternal medical care (fetal growth restriction) (2022). Clinical guidelines. URL: https://sudact.ru/law/klinicheskie-rekomendatsii-nedostatochnyi-rost-ploda-trebuiushchii-predostavleniia/klinicheskie-rekomendatsii/ (accessed 07.02.2025).

6. Peasley R., Rangel L.A.A., Casagrandi D. et al. Management of late-onset fetal growth restriction: pragmatic approach. Ultrasound Obstet. Gynecol. 2023;62(1):106-114. DOI: 10.1002/uog.26190.

7. Mitkin N.A., Drachev S.N., Krieger E.A. et al. Sample size calculation for cross-sectional studies. Human Ecology. 2023;30(7):509-522. DOI: 10.17816/humeco569406. (In Russ.)

8. Avramenko V.Yu., Degtyareva M.V. Newborn assessment using Virginia Apgar methodology and its modifications. Pediatriya. Zhurnal im. G.N. Speransky. 2021;100(3):152-165. DOI:10.24110/0031-403X-2021-100-3-152-165. (In Russ.)

9. Signs of fetal intrauterine hypoxia that require the provision of maternal medical care. Clinical Guidelines (RSOG). URL: https://roag-portal.ru/recommendations_obstetrics (accessed 08.12.2024).

10. Hadlock F.P., Harrist R.B., Sharman R.S. et al. Estimation of fetal weight with the use of head, body, and femur measurements – a prospective study // Am. J. Obstet. Gynecol. 1985;151:333-337. DOI: 10.1016/0002-9378(85)90298-4.

11. Francis A., Hugh O., Gardosi J. Customized vs INTER-GROWTH-21st standards for the assessment of birth-weight and stillbirth risk at term // Am. J. Obstet. Gynecol. 2018;218(2S):S692-S699. DOI: 10.1016/j.ajog.2017.12.013.

12. Ciobanu A., Wright A., Syngelaki A. et al. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio // Ultrasound Obstet. Gynecol. 2019;53(4):465-472. DOI: 10.1002/uog.20157.

13. Acharya G., Ebbing C., Karlsen H.O. et al. Sex-specific reference ranges of cerebroplacental and umbilicocerebral ratios: longitudinal study // Ultrasound Obstet. Gynecol. 2020;56(2):187-195. DOI: 10.1002/uog.21870.

14. Barros A.J., Hirakata V.N. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio // BMC Med. Res. Methodol. 2003;3:21. DOI: 10.1186/1471-2288-3-21.

15. Unguryanu T.N., Grjibovski A.M. Introduction to STATA – software for statistical data analysis. Human Ecology. 2014;21(1):60-63. DOI: 10.17816/humeco17275. (In Russ.)

16. Dall’Asta A., Stampalija T., Mecacci F. et al. Ultrasound prediction of adverse perinatal outcome at diagnosis of late-onset fetal growth restriction // Ultrasound Obstet. Gynecol. 2022;59(3):342-349. DOI:10.1002/uog.23714.

17. Shaw M., Lutz T., Gordon A. Does low body fat percentage in neonates greater than the 5th percentile birthweight increase the risk of hypoglycaemia and neonatal morbidity? // J. Paediatr. Child Health. 2019;55(12):1424-1428. DOI: 10.1111/jpc.14433.

18. Srirambhatla A., Mittal S., Vedantham H. Efficacy of pulsatility index of fetal vessels in predicting adverse perinatal outcomes in fetuses with growth restriction – differences in early- and late-onset fetal growth restriction // Maedica (Bucur). 2022;17(1):107-115. DOI: 10.26574/maedica.2022.17.1.107.

19. Kennedy A.M., Woodward P.J. A Radiologist’s guide to the performance and interpretation of obstetric doppler US // Radiographics. 2019;39(3):893-910. DOI: 10.1148/rg.2019180152.

20. Yılmaz C., Melekoğlu R., Özdemir H., Yaşar Ş. The role of different Doppler parameters in predicting adverse neonatal outcomes in fetuses with late-onset fetal growth restriction // Turk. J. Obstet. Gynecol. 2023;20(2):86-96. DOI: 10.4274/tjod.galenos.2023.87143.

21. Ortega M.A., Romero B., Asúnsolo Á. et al. Pregnancy-associated venous insufficiency course with placental and systemic oxidative stress // J. Cell Mol. Med. 2020;24(7):4157-4170. DOI: 10.1111/jcmm.15077.

22. Levy M., Alberti D., Kovo M. et al. Placental pathology in pregnancies complicated by fetal growth restriction: recurrence vs. new onset // Arch. Gynecol. Obstet. 2020;301(6):1397-1404. DOI: 10.1007/s00404-020-05546-x.


Review

For citations:


Shcherbakova E.A., Istomina N.G., Baranov A.N., Grjibovski A.M. Role of ultrasound parameters and clinical anamnestic data in late-onset fetal growth restriction as potential risk factors for neonatal admission to the intensive care unit. Journal of Siberian Medical Sciences. 2025;(2):32-43. (In Russ.) https://doi.org/10.31549/2542-1174-2025-9-2-32-43

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)