Preview

Journal of Siberian Medical Sciences

Advanced search

The causes of age-related alopecia from the point of view of modern morphology

https://doi.org/10.31549/2542-1174-2025-9-2-112-125

Abstract

Aging is an inherent natural process, complex and multicomponent, consisting of the gradual accumulation of biological changes that at the systemic level weaken the body’s ability to resist stress factors, and contribute to the development of chronic diseases. However, thanks to the progressive development of medical technologies, humanity can not only afford to minimize the damage from this process, but also look attractive and healthy even at an advanced age. In the realities of modern life, this is a more than achievable goal. This review highlights, in our opinion, the main morphological factors leading to deterioration in the quality of hair due to age-related alopecia – involutional changes in the vascular bed and the skin lymphatic system with a change in its intercellular substance, depletion of the of stem cell niches of hair follicles, and also the mitochondrial theory of aging is considered. Further detailed study of these factors is necessary to understand the subtle cellular mechanisms of aging, which will slow them down, and, if possible, completely neutralize them. This strategy is profitable over the long term and can significantly advance such areas of medicine as trichology, cosmetology, geriatrics, and also influence the tactical approaches of pharmaceutical companies engaged in the development of drugs for preventing age-related alopecia. Perhaps, after a while, having long, lush, and most importantly, your own hair in old age will be a matter of course.

About the Authors

A. A. Balandin
Perm State Medical University named after Academician E.A. Wagner
Russian Federation

Anatolii A. Balandin – Dr. Sci. (Med.), Associate Professor, Department of Normal, Topographic and Clinical Anatomy, Operative Surgery

26, Petropavlovskaya str., Perm, 614990



V. V. Tiunova
Perm State Medical University named after Academician E.A. Wagner
Russian Federation

Valensiya V. Tiunova – Post-graduate Student, Department of Normal, Topographic and Clinical Anatomy, Operative Surgery

26, Petropavlovskaya str., Perm, 614990



I. A. Balandina
Perm State Medical University named after Academician E.A. Wagner
Russian Federation

Irina A. Balandina – Dr. Sci. (Med.), Professor, Head, Department of Normal, Topographic and Clinical Anatomy, Operative Surgery

26, Petropavlovskaya str., Perm, 614990



References

1. Prokhorov L.Yu. Increase active life expectancy of older people through the use of general theory of rejuvenating. Clinical Gerontology. 2017;23(9-10):55-56. (In Russ.)

2. Aburto J.M., Villavicencio F., Basellini U. et al. Dynamics of life expectancy and life span equality. Proc. Natl. Acad. Sci. U S A. 2020;117(10):5250-5259. DOI: 10.1073/pnas.1915884117.

3. Gu J., Ming X. The influence of living conditions on self-rated health: evidence from China. Int. J. Environ. Res. Public Health. 2021;18(17):9200. DOI: 10.3390/ijerph18179200.

4. Reizine N.M., O’Donnell P.H. Modern developments in germline pharmacogenomics for oncology prescribing. CA Cancer J. Clin. 2022;72(4):315-332. DOI: 10.3322/caac.21722.

5. Balandin A.A., Zheleznov L.M., Balandina I.A. Age-related alterations in the inferior semilunar lobule of cerebellum in men. Science of the Young (Eruditio Juvenium). 2020;8(3):337-344. DOI: 10.23888/HMJ202083337-344. (In Russ.)

6. von Fingerhut G., Okamoto N., Araki A. et al. Factors related to sleep quality among community-dwelling Russian older people in the Far East. The role of alcohol as a risk factor: a cross-sectional study. Journal of Siberian Medical Sciences. 2024;8(2):7-20. DOI: 10.31549/2542-1174-2024-8-2-7-20.

7. Wleklik M., Uchmanowicz I., Jankowska-Polańska B. et al. The role of nutritional status in elderly patients with heart failure. J. Nutr. Health Aging. 2018;22(5):581-588. DOI: 10.1007/s12603-017-0985-1.

8. Pisanti S., Mencherini T., Esposito T. et al. The medieval skincare routine according to the formulations of Madgistra Trotula and the Medical School of Salerno and its reflection on cosmetology of the third millennium. J. Cosmet. Dermatol. 2023;22(2):542-554. DOI: 10.1111/jocd.15234.

9. Ermolaeva E.V., Eminova B.Ya., Dzhagutkhanova T.B. Development of cosmetology in Russia. Bulletin of Medical Internet Conferences. 2016;6(1):99. (In Russ.)

10. Stochik A.A. From the history of formation of cosmetology in Russia. First Moscow institute of medical cosmetics. Bulletin of Semashko National Research Institute of Public Health. 2019;3-4:88-95. DOI: 10.25742/NRIPH.2019.03.010. (In Russ.)

11. Trüeb R.M., Rezende H.D., Dias M.F.R.G., Uribe N.C. Trichology and trichiatry; etymological and terminological considerations. Int. J. Trichology. 2022;14(4):117-119. DOI: 10.4103/ijt.ijt_104_21.

12. Trüeb R.M., Dutra H., Dias M.F.R.G. Autistic-undisciplined thinking in the practice of medical trichology. Int. J. Trichology. 2019;11(1):1-7. DOI: 10.4103/ijt.ijt_79_18.

13. Svetlichnaya I.V. The impact of hairstyle on communication process. Society: Philosophy, History, Culture. 2018;11(55):156-163. DOI: 10.24158/fik.2018.11.29. (In Russ.)

14. Sinclair R.D. Healthy hair: what is it // J. Investig. Dermatol. Symp. Proc. 2007;12(2):2-5. DOI: 10.1038/sj.jidsymp.5650046.

15. Schneider M.R., Schmidt-Ullrich R., Paus R. The hair follicle as a dynamic miniorgan // Curr. Biol. 2009;19(3):R132-142. DOI: 10.1016/j.cub.2008.12.005.

16. Slominski A., Wortsman J., Plonka P.M. et al. Hair follicle pigmentation // J. Invest. Dermatol. 2005;124(1):13-21. DOI: 10.1111/j.0022-202X.2004.23528.x.

17. Cao W., Mao H., McCallum N.C. et al. Biomimetic pheomelanin to unravel the electronic, molecular and supramolecular structure of the natural product // Chem. Sci. 2023;31;14(15):4183-4192. DOI: 10.1039/d2sc06418a.

18. Feng Z., Qin Y., Jiang G. Reversing gray hair: inspiring the development of new therapies through research on hair pigmentation and repigmentation progress // Int. J. Biol. Sci. 2023;19(14):4588-4607. DOI: 10.7150/ijbs.86911.

19. Kato H., Kinoshita K., Saito N. et al. The effects of ischemia and hyperoxygenation on hair growth and cycle // Organogenesis. 2020;16(3):83-94. DOI: 10.1080/15476278.2020.1794271.

20. Ryan T. The ageing of the blood supply and the lymphatic drainage of the skin // Micron. 2004;35(3):161-171. DOI: 10.1016/j.micron.2003.11.010.

21. Cracowski J.L., Roustit M. Human skin microcirculation // Compr. Physiol. 2020;10(3):1105-1154. DOI: 10.1002/cphy.c190008.

22. Młodziński K., Świątczak M., Rohun J. et al. Vascular aging and damage in patients with iron metabolism disorders // Diagnostics (Basel). 2022;12(11):2817. DOI: 10.3390/diagnostics12112817.

23. Vlasova T.I., Petrishchev N.N., Vlasov T.D. Endothelium and aging: mechanisms for formation of senescence associated phenotype of endothelial cells. Regional Blood Circulation and Microcirculation. 2023;22(3(87)):19-33. DOI: 10.24884/1682-6655-2023-22-3-19-33.

24. Kataru R.P., Park H.J., Shin J. et al. Structural and functional changes in aged skin lymphatic vessels // Front. Aging. 2022;3:864860. DOI: 10.3389/fragi.2022.864860.

25. Quaresma J.A.S. Organization of the skin immune system and compartmentalized immune responses in infectious diseases // Clin. Microbiol. Rev. 2019;32(4):e00034-18. DOI: 10.1128/CMR.00034-18.

26. Skobe M., Detmar M. Structure, function, and molecular control of the skin lymphatic system // J. Investig. Dermatol. Symp. Proc. 2000;5(1):14-19. DOI: 10.1046/j.1087-0024.2000.00001.x.

27. Raja E., Clarin M.T.R.D.C., Yanagisawa H. Matricellular proteins in the homeostasis, regeneration, and aging of skin // Int. J. Mol. Sci. 2023;24(18):14274. DOI: 10.3390/ijms241814274.

28. Cárdenas-León C.G., Mäemets-Allas K., Klaas M. et al. Matricellular proteins in cutaneous wound healing // Front. Cell Dev. Biol. 2022;10:1073320. DOI: 10.3389/fcell.2022.1073320.

29. Zhang M., Pal A., Lyu X. et al. Artificial-goosebump-driven microactuation // Nat. Mater. 2024;23(4):560-569. DOI: 10.1038/s41563-024-01810-6.

30. Jang H., Jo Y., Lee J.H., Choi S. Aging of hair follicle stem cells and their niches // BMB Rep. 2023;56(1):2-9. DOI: 10.5483/BMBRep.2022-0183.

31. Kolios G., Moodley Y. Introduction to stem cells and regenerative medicine // Respiration. 2013;85(1):3-10. DOI: 10.1159/000345615.

32. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell // Blood Cells. 1978;4(1-2):7-25.

33. Li K.N., Tumbar T. Hair follicle stem cells as a skin-organizing signaling center during adult homeostasis // EMBO J. 2021;40(11):e107135. DOI: 10.15252/embj.2020107135.

34. Balandin А.А., Yudina V.V., Balandina I.A. et al. Morphologial changes in the hair follicle and hair shaft in old age. Advances in Gerontology. 2023;36(6):874-877. DOI: 10.34922/AE.2023.36.6.016. (In Russ.)

35. Xie Y., Chen D., Jiang K. et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell. 2022;29(1):70-85.e6. DOI: 10.1016/j.stem.2021.09.009.

36. Bratic A., Larsson N.G. The role of mitochondria in aging. J. Clin. Invest. 2013;123(3):951-957. DOI: 10.1172/JCI64125.

37. Legashcheva N.V., Novotochinova A.A. Mitochondrial theory of aging. Innovation Science. 2019;2:149-151. (In Russ.)

38. Harman D. The aging process. Proc. Natl. Acad. Sci. U S A. 1981;78(11):7124-7128. DOI: 10.1073/pnas.78.11.7124.

39. Harman D. Free radical theory of aging. Mutat. Res. 1992;275(3-6):257-266. DOI: 10.1016/0921-8734(92)90030-s.

40. Harman D. Aging: overview. Ann. N Y Acad. Sci. 2001;928:1-21. DOI: 10.1111/j.1749-6632.2001.tb05631.x.

41. Balandin А.А., Timganova G.S., Balandina I.A. Blood-brain barrier as guardian of brain youth (lecture). Regional Blood Circulation and Microcirculation. 2024;23(2(90)):90-96. DOI: 10.24884/1682-6655-2024-23-2-84-90. (In Russ.)

42. Egorova A.V., Voronkov D.N., Fedorova E.N. et al. Structural and functional features of mitochondria in neurons and gliocytes of various cerebral regions of laboratory rodents. Clinical and Experimental Morphology. 2023;12(2):5-13. DOI: 10.31088/CEM2023.12.2.5-13. (In Russ.)

43. Yin F., Jiang T., Cadenas E. Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signaling. Biochem. Soc. Trans. 2013;41(1):101-115. DOI: 10.1042/BST20120260.

44. Singh B., Schoeb T.R., Bajpai P. et al. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis. 2018;9(7):735. DOI: 10.1038/s41419-018-0765-9.

45. Natarelli N., Gahoonia N., Aflatooni S. et al. Dermatologic manifestations of mitochondrial dysfunction: a review of the literature. Int. J. Mol. Sci. 2024;25(6):3303. DOI: 10.3390/ijms25063303.

46. Csekes E., Račková L. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci. 2021;22(23):12641. DOI: 10.3390/ijms222312641.


Review

For citations:


Balandin A.A., Tiunova V.V., Balandina I.A. The causes of age-related alopecia from the point of view of modern morphology. Journal of Siberian Medical Sciences. 2025;(2):113-126. (In Russ.) https://doi.org/10.31549/2542-1174-2025-9-2-112-125

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)