Link between GATA3, FOXA1, ELF5 and clinicopathologic parameters of luminal breast cancer
https://doi.org/10.31549/2542-1174-2019-4-62-74
Abstract
Currently relevant is the study of molecular biological factors that play a role in the prognosis of breast cancer (BC). Of great interest is the analysis of the transcription factors GATА3, FOXA1, ELF5 involved in differentiation of the mammary gland epithelium, as well as in the pathogenesis of BC and the mechanisms of tumor progression.
101 patients (age from 30 years to 81 years, mean age 54.9 ± 10.4 years) with breast carcinoma (T1–4N1–3M0) participated in the study of transcription factors expression depending on clinical and morphological characteristics of BC. Inclusion criteria: luminal breast cancer, no preoperative treatment. The exclusion criterion is stage IV disease. The expression characteristics of the studied markers in the context of different clinical and morphological parameters of the neoplasm node were analyzed. Negative expression of ELF5 was found to be associated with a large tumor size. Expression of GATА3, FOXA1 is lower in patients with negative expression to progesterone receptors. The pronounced expression of ELF5 is associated with the phenomenon of retraction. The character of expression of the studied markers is associated with the development of lymphogenic metastasis.
Thus, the expression characteristics of GATА3, FOXA1 and ELF5 may be useful as additional prognostic factors used to assess the risk of lymphogenic metastasis.
Conflict of interest. The authors declare no conflict of interest.
About the Authors
S. V. VtorushinRussian Federation
Vtorushin Sergey Vladimirovich — Dr. Sci. (Med.), Associate Professor, Professor of the Pathology Department, Siberian State Medical University (Tomsk); Head of the Pathology Division of the Clinics
Leading Researcher, Pathology Department
D. V. Vasilchenko
Russian Federation
Vasilchenko Dmitriy Vladimirovich — Assistant Professor of the Pathology Department
Pathologist of the Pathology Division of the Clinics
N. V. Krakhmal’
Russian Federation
Krakhmal’ Nadezhda Valeryevna — Cand. Sci. (Med.), Associate Professor of the Pathology Department
Pathologist of the Pathology Division of the Clinics
S. V. Patalyak
Russian Federation
Patalyak Stanislav Victorovich — Cand. Sci (Med.), Head of Oncology Department of Day Hospital
References
1. Kaprin A.D., Starinsky V.V., Petrova G.V. (eds.) (2017). Malignant Neoplasms in Russia in 2017 (Morbidity and Mortality). Moscow, 2018, pp. 4–6. In Russ.
2. Cancer Today: Cancer Fact Sheets (2018). International Agency for Research on Cancer. World Health Organization. Retrieved Aug 10, 2018 from http:// gco.iarc.fr/today/fact-sheets-cancers.
3. Volchenko A.A., Pak D.D., Usov F.N., Fetisova E.Yu. (2012). Current state of reduction mammaplasty in conservational surgery for breast cancer. Journal of N.N. Blokhin Russian Cancer Research Center, 23, 4, 12–16.
4. Wang L., Guyatt G.H., Kennedy S.A. et al. (2016). Predictors of persistent pain after breast cancer surgery: a systematic review and meta-analysis of observational studies. CMAJ, 188 (14), E352–E361. doi: 10.1503/cmaj.151276.
5. Bernardo G.M., Keri R.A. (2012). FOXA1: a transcription factor with parallel functions in development and cancer. Biosci. Rep., 32 (2), 113–130. doi: 10.1042/BSR20110046.
6. Chivukula M., Picarsic J., Bulusu G. et al. (2015). Prognostic signifi cance of transcription factors FOXA1 and GATA-3 in ductal carcinoma in situ in terms of recurrence and estrogen receptor status. J. Cancer Metastasis Treat., 1, 84–89. doi: 10.4103/2394- 4722.157600.
7. Wang C.C., Jamal L., Janes K.A. (2012). Normal morphogenesis of epithelial tissues and progression of epithelial tumors. Wiley Interdiscip. Rev. Syst. Biol. Med., 4 (1), 51–78. doi: 10.1002/wsbm.159.
8. Asselin-Labat M.L., Sutherland K.D., Vaillant F. et al. (2011). Gata-3 negatively regulates the tumorinitiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol. Cell. Biol., 31 (22), 4609–4622. doi: 10.1128/MCB.05766-11.
9. Tkocz D., Crawford N.T., Buckley N.E. et al. (2012). BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene, 31 (32), 3667–3678. doi: 10.1038/onc.2011.531.
10. Ciriello G., Gatza M.L., Beck A.H. et al. (2015). Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 63 (2), 506–519. doi: 10.1016/j. cell.2015.09.033.
11. Mertins P., Mani D.R., Ruggles K.V. et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534 (7605), 55–62. doi: 10.1038/nature18003.
12. Park C., Yoon K.A., Kim J. et al. (2019). Integrative molecular profi ling identifi es a novel cluster of estrogen receptor-positive breast cancer in very young women. Cancer Sci., 110 (5), 1760–1770. doi: 10.1111/ cas.13982.
13. Mehra R., Varambally S., Ding L. et al. (2005). Identifi cation of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res., 65 (24), 11259–11264. doi: 10.1158/0008-5472. CAN-05-2495.
14. Yoon N.K., Maresh E.L., Shean D. et al. (2010). Higher levels of GATA3 predict better survival in women with breast cancer. Hum. Pathol., 41 (12), 1794–1801. doi: 10.1016/j.humpath.2010.06.010.
15. Gulbahce H.E., Sweeney C., Surowiecka M. et al. (2013). Signifi cance of GATA-3 expression in outcomes of patients with breast cancer who received systemic chemotherapy and/or hormonal therapy and clinicopathologic features of GATA-3-positive tumors. Hum. Pathol., 44 (11), 2427–2431. doi: 10.1016/j.humpath.2013.05.022.
16. Fang S.H., Chen Y., Weigel R.J. (2009). GATA-3 as a marker of hormone response in breast cancer. J. Surg. Res., 157 (2), 290–295. doi: 10.1016/j.jss.2008.07.015.
17. Voduc D., Cheang M., Nielsen T. (2008). GATA-3 expression in breast cancer has a strong association with estrogen receptor but lacks independent prognostic value. Cancer Epidemiol. Biomarkers Prev., 17 (2), 365–373. doi: 10.1158/1055-9965.EPI-06-1090.
18. Rangel N., Fortunati N., Osella-Abate S. et al. (2018). FOXA1 and AR in invasive breast cancer: new fi ndings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer, 18 (1), 703. doi: org/10.1186/s12885-018-4624-y.
19. Hu Q., Luo Z., Xu T. et al. (2014). FOXA1: a promising prognostic marker in breast cancer. Asian Pacifi c J. Cancer Prev., 15 (1), 11–16. doi: 10.7314/ APJCP.2014.15.1.11.
20. Williamson E.A., Wolf I., O’Kelly J. et al. (2006). BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27(Kip1). Oncogene, 25 (9), 1391–1399. doi: 10.1038/ sj.onc.1209170.
21. De Lara S., Nyqvist J., Werner Rönnerman E. et al. (2019). The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10- year period (2004–2014). BMC Cancer, 19 (1), 187. doi: org/10.1186/s12885-019-5373-2.
22. Choi Y.S., Chakrabarty R., Escamilla-Hernandez R., Sinha S. (2009). Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev. Biol., 329 (2), 227–241. doi: 10.1016/j.ydbio.2009.02.032.
23. Oakes S.R., Naylor M.J., Asselin-Labat M.L. et al. (2008). The Ets transcription factor Elf5 specifi es mammary alveolar cell fate. Genes Dev., 22 (5), 581– 586. doi: 10.1101/gad.1614608.
24. Kalyuga M., Callego-Ortega D., Lee H.J. et al. (2012). ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol., 10 (12), e1001461. doi: 10.1371/journal.pbio.1001461.
25. Omata F., McNamara K.M., Suzuki K. et al. (2018). Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer, 25 (4), 489– 496. doi: org/10.1007/s12282-018-0842-z
26. Chakrabarti R., Hwang J. Andres Blanco H. et al. (2012). Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat. Cell Biol., 14 (11), 1212–1222. doi: 10.1038/ncb2607.
27. Acs G., Paragh G., Rakosy Z., Laronga C., Zhang P.J. (2012). The extent of retraction clefts correlates with lymphatic vessel density and VEGF-C expression and predicts nodal metastasis and poor prognosis in early-stage breast carcinoma. Mod. Pathol., 25 (2), 163–177. doi: 10.1038/modpathol.2011.
Review
For citations:
Vtorushin S.V., Vasilchenko D.V., Krakhmal’ N.V., Patalyak S.V. Link between GATA3, FOXA1, ELF5 and clinicopathologic parameters of luminal breast cancer. Journal of Siberian Medical Sciences. 2019;(4):62-74. https://doi.org/10.31549/2542-1174-2019-4-62-74