Preview

Journal of Siberian Medical Sciences

Advanced search

Genetic predisposition to the formation of acne scars

https://doi.org/10.31549/2542-1174-2020-2-98-110

Abstract

The paper presents a literature review on the associations of molecular genetic markers with scar formation in patients with acne. Given the high prevalence of the disease and long-term negative aesthetic consequences, the problem of post-acne is very relevant. However, the detection of reliable prognostic markers of an increased risk of scar formation due to acne is remaining an unsolved problem. The paper reviews most recent publications devoted to the analysis of molecular genetic markers with post-acne scars and concluded that the study of the genetic aspects of scar formation in patients with acne is almost at the initial stage. The lack of effective means for the prevention and treatment of acne scars necessitates a further search.

About the Authors

O. B. Nemchaninova
Novosibirsk State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Head, Department of Dermatovenereology and Cosmetology, 

Novosibirsk 



E. V. Chernikova
Novosibirsk State Medical University
Russian Federation

Cand. Sci. (Med.), Assistant, Department of Dermatovenereology and Cosmetology, 

52, Krasny Prospect, Novosibirsk, 630091



Yu. V. Maksimova
Novosibirsk State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Head, Department of Medical Genetics and Biology,

Novosibirsk



T. B. Reshetnikova
Novosibirsk State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Department of Dermatovenereology and Cosmetology,

Novosibirsk



A. V. Spitsyna
Novosibirsk State Medical University
Russian Federation

Cand. Sci. (Med.), Associate Professor, Department of Dermatovenereology and Cosmetology,

Novosibirsk



V. N. Maksimov
Novosibirsk State Medical University; Research Institute of Internal and Preventive Medicine (Novosibirsk)

Dr. Sci. (Med.), Professor, Head, Laboratory of Molecular Genetic Research of Therapeutic Diseases,

Novosibirsk



References

1. Höger P.G. (2013). Pediatric Dermatology. (A.A. Kubanova, A.N. Lvova, Trans.). Moscow: Publishing House of Panfilov; BINOM, 648 p. In Russ.

2. Thiboutot D.M., Dréno B., Abanmi A. (2018). Practical management of acne for clinicians: An international consensus from the Global Alliance to Improve Outcomes in Acne. J. Am. Acad. Dermatol., 78 (2, 1), S1–S23.e1. doi: 10.1016/j.jaad.2017.09.078.

3. Dréno B., Bagatin E., Blume-Peytavi U. et al. (2018, Oct). Female type of adult acne: Physiological and psychological considerations and management. J. Dtsch. Dermatol. Ges., 16 (10), 1185–1194. In Germ.

4. Harper J.C., Stein Gold L.F., Alexis A.F., Tan J.K.L. (2018, Jun). Treating acne in adult women. Semin. Cutan. Med. Surg., 37 (3S), S67–70.

5. Connolly D., Vu H.L., Mariwalla K., Saedi N. (2017). Acne scarring — pathogenesis, evaluation, and treatment options. J. Clin. Aesthet. Dermatol., 10 (9), 12–23.

6. Carlavan I., Bertino B., Rivier M. et al. (2018, Oct). Atrophic scar formation in patients with acne involves long-acting immune responses with plasma cells and alteration of sebaceous glands. Br. J. Dermatol., 179 (4), 906–917. doi: 10.1111/bjd.16680.

7. Tan J., Thiboutot D., Gollnick H. et al. (2017, Sep). Development of an atrophic acne scar risk assessment tool. J. Eur. Acad. Dermatol. Venereol., 31 (9), 1547– 1554. doi: 10.1111/jdv.14325.

8. Kang S., Lozada V.T., Bettoli V. et al. (2016, Jun 1). New atrophic acne scar classification: reliability of assessments based on size, shape, and number. J. Drugs Dermatol., 15 (6), 693–702.

9. Tan J., Bourdés V., Bissonnette R. et al. (2017, Jun 1). Prospective study of pathogenesis of atrophic acne scars and role of macular erythema. J. Drugs Dermatol., 16 (6), 566–572.

10. Lee H.J., Jang Y.J. (2018). Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids. Int. J. Mol. Sci., 19 (3), 711. doi: 10.3390/ijms19030711.

11. Tan S., Khumalo N., Bayat A. (2019). Understanding keloid pathobiology from a quasi-neoplastic perspective: less of a scar and more of a chronic inflammatory disease with cancer-like tendencies. Front. Immunol., 10, 1810. doi: 10.3389/fimmu.2019.01810.

12. Zhu Z., Ding J., Tredget E.E. (2016). The molecular basis of hypertrophic scars. Burns & Trauma, 4, 2. doi: 10.1186/s41038-015-0026-4. 13. Tuan T.L., Nichter L.S. (1998). The molecular basis of keloid and hypertrophic scar formation. Mol. Med. Today, 4, 19–24. doi: 10.1016/S1357-4310(97) 80541-2.

13. Krumdieck R., Hook M., Rosenberg L.C., Volanakis J.E. (1992). The proteoglycan decorin binds C1q and inhibits the activity of the C1 complex. J. Immunol., 149, 3695–3701.

14. Wang P., Liu X., Xu P. et al. (2016). Decorin reduces hypertrophic scarring through inhibition of the TGF-β1/Smad signalling pathway in a rat osteomyelitis model. Exp. Ther. Med., 12 (4), 2102–2108. doi: 10.3892/etm.2016.3591.

15. Yokota K., Kobayakawa K., Saito T. et al. (2017, Mar). Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am. J. Pathol., 187 (3), 639–653. doi: 10.1016/j.ajpath.2016.11.010.

16. Crawford J., Nygard K., Gan B.S., O’Gorman D.B. (2015, Feb). Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring. Exp. Dermatol., 24 (2), 120–126. doi: 10.1111/ exd.12601.

17. Akoglu G., Tan C., Ayvaz D.C., Tezcan I. (2019, Feb). Tumour necrosis factor α-308 G/A and interleukin 1 β-511 C/T gene polymorphisms in patients with scarring acne. J. Cosmet. Dermatol., 18 (1), 395–400. doi: 10.1111/jocd.12558.

18. Ogawa R. (2017, Mar). Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci., 18 (3), pii: E606. doi: 10.3390/ijms18030606.

19. Velez Edwards D.R., Tsosie K.S., Williams S.M. et al. (2014, Dec). Admixture mapping identifies a locus at 15q21.2-22.3 associated with keloid formation in African Americans. Hum. Genet., 133 (12), 1513–1523. doi: 10.1007/s00439-014-1490-9.

20. HuGE Navigator. URL: https://phgkb.cdc.gov/PHGKB/startPagePhenoPedia.action.

21. Wang R., Ghahary A., Shen Q. et al. (2000, Mar-Apr). Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen., 8 (2), 128–137.

22. Song M., Liu Y. (2014, Dec). Analysis on polymorphism at -509 C/T site of TGF-β1 gene in patients with keloids. Zhonghua Shao Shang Za Zhi, 30 (6), 482–486.

23. Tu Y., Lineaweaver W.C., Zhang F. (2017, May 29). TGF-β1 -509C/T polymorphism and susceptibility to keloid disease: a systematic review and meta-analysis. Scars, Burns & Heal, 3. doi: 10.1177/2059513117709943.

24. Zhu X.J., Li W.Z., Li H. et al. (2017, Apr 20). Association of interleukin-6 gene polymorphisms and circulating levels with keloid scars in a Chinese Han population. Genet. Mol. Res., 16 (2). doi: 10.4238/gmr16029110.

25. Shih B., Bayat A. (2012, Apr). Comparative genomic hybridisation analysis of keloid tissue in Caucasians suggests a possible involvement of HLA-DRB5 in disease pathogenesis. Arch. Dermatol. Res., 304 (3), 241–249. doi: 10.1007/s00403-011-1182-4.

26. Wu Y., Wang B., Li Y.H. et al. (2012, Jun 29). Meta-analysis demonstrates an association between Arg72Pro polymorphism in the P53 gene and susceptibility to keloids in the Chinese population. Genet. Mol. Res., 11 (2), 1701–1711. doi: 10.4238/2012.

27. He L., Wu W.J., Yang J.K. et al. (2014). Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne. Nat. Commun., 5, 2870.

28. Nakashima M., Chung S., Takahashi A. et al. (2010, Sep). A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat. Genet., 42 (9), 768–771. doi: 10.1038/ng.645.

29. Zhu F., Wu B., Li P. et al. (2013, May 7). Association study confirmed susceptibility loci with keloid in the Chinese Han population. PLoS One, 8 (5): e62377. doi: 10.1371/journal.pone.0062377.

30. Fujita M., Yamamoto Y., Jiang J.J. et al. (2019, Feb). NEDD4 is involved in inflammation development during keloid formation. J. Invest. Dermatol., 139 (2), 333–341. doi: 10.1016/j.jid.2018.07.044.

31. Chen L., Li J., Li Q. et al. (2018). Overexpression of LncRNA AC067945.2 down-regulates collagen expression in skin fibroblasts and possibly correlates with the VEGF and Wnt signalling pathways. Cell. Physiol. Biochem., 45 (2), 761–771. doi: 10.1159/000487167.

32. Li J., Chen L., Cao C. et al. (2016). The long non-coding RNA LncRNA8975-1 is upregulated in hypertrophic scarfibroblasts and controls collagen expression. Cell. Physiol. Biochem., 40 (1–2), 326–334.

33. Wu X., Li J., Yang X. et al. (2018, Aug). MiR-155 inhibits the formation of hypertrophic scar fi broblasts by targeting HIF-1α via PI3K/AKT pathway. J. Mol. Histol., 49 (4), 377–387. doi: 10.1007/s10735-018-9778-z.

34. Wang X., Zhang Y., Jiang B.H. et al. (2017, Dec 15). Study on the role of Hsa-miR-31-5p in hypertrophic scar formation and the mechanism. Exp. Cell. Res., 361 (2), 201–209. doi: 10.1016/j.yexcr.2017.09.009.

35. Marshall C.D., Hu M.S., Leavitt T. et al. (2018, Feb 1). Cutaneous scarring: basic science, current treatments, and future directions. Adv. Wound Care (New Rochelle), 7 (2), 29–45. doi: 10.1089/wound.2016.0696.

36. Chen L., Li J., Li Q. et al. (2017, Aug). Non-coding RNAs: the new insight on hypertrophic scar. J. Cell. Biochem., 118 (8), 1965–1968. doi: 10.1002/jcb.25873.


Review

For citations:


Nemchaninova O.B., Chernikova E.V., Maksimova Yu.V., Reshetnikova T.B., Spitsyna A.V., Maksimov V.N. Genetic predisposition to the formation of acne scars. Journal of Siberian Medical Sciences. 2020;(2):98-110. (In Russ.) https://doi.org/10.31549/2542-1174-2020-2-98-110

Views: 233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)