New aspects of the etiology and pathogenesis of HIV infection (literature review)
https://doi.org/10.31549/2542-1174-2021-1-92-104
Abstract
The paper presents the review on current ideas about the etiology and pathogenesis of HIV infection. It highlights the issues of the immune response in this disease, as well as the problems of HIV resistance to modern drugs.
About the Authors
D. V. KapustinRussian Federation
Kapustin Dmitry Vyacheslavovich — Cand. Sci. (Med.), Teaching Assistant, Infectious Diseases Department.
52, Krasny Prospect, Novosibirsk, 630091
Ya. S. Ul’yanova
Russian Federation
Ul’yanova Yana Savelyevna — Infectious Disease Physician, Deputy Chief Physician
G. S. Karpovich
Russian Federation
Karpovich Gleb Sergeyevich — Teaching Assistant, Infectious Diseases Department
E. I. Krasnova
Russian Federation
Krasnova Elena Igorevna — Dr. Sci. (Med.), Professor, Head, Infectious Diseases Department
V. G. Kuznetsova
Russian Federation
Kuznetsova Vera Gavriilovna — Dr. Sci. (Med.), Professor, Infectious Diseases Department
I. Ya. Izvekova
Russian Federation
Izvekova Irina Yakovlevna — Dr. Sci. (Med.), Professor, Infectious Diseases Department
References
1. World Health Organization. HIV/AIDS (2020). Retrieved on November 9, 2020 from URL: https://www.who.int/health-topics/hiv-aids/.
2. World Health Organization. HIV/AIDS. Key facts (2020). Retrieved on November 9, 2020 from https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
3. About the state of sanitary and epidemiological wellbeing of the population in the Russian Federation in 2019. State report. Retrieved on November 9, 2020 from https://www.rospotrebnadzor.ru/iblock/8e4/gosdoklad-2a-2019-seb-29-05.pdf. In Russ.
4. Fanales-Belasio E., Raimondo M., Suligoi B., Butto S. (2010). HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann. Ist. Super Sanita, 46 (1), 5-14. doi: 10.4415/ANN_10_01_02.
5. Sarafianos S.G., Marchand B., Das K. et al. (2009). Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J. Mol. Biol., 385, 693-713.
6. Ho D.D. (1997). Perspectives series: host/pathogen interactions. Dynamics of HIV-1 replication in vivo. J. Clin. Invest., 99, 2565-2567.
7. Gurgo C., Robert-Guroff M., Gallo R.C. (1987). An overview of the human T-lymphotropic retroviruses and the role of HTLV-III/LAV in AIDS. Antibiot. Chemother., 3, 1-12. doi: 10.1159/000414214.
8. Luciw P.A. (1996). Human immunodeficiency virus and their replication (pp. 1881-1952). In D.M. Knipe, P.M. Howley (eds.). Fields Virology. Philadelphia: Lippincott-Raven, 1996.
9. Lucas S.B., Hounnou A., Peacock C. et al. (1993). The mortality and pathology of HIV infection in a West African city. AIDS, 7, 1569-1579.
10. Wang J.Y., Chen X.H., Shao B. et al. (2018). Identification of a new HIV-1 circulating recombinant form CRF65_cpx strain in Jilin, China. AIDS Res. Hum. Retroviruses, 34 (8), 709-713. doi: 10.1089/AID.2018.0086.
11. Hu Y., Wan Z., Zhou Y.H. et al. (2017). Identification of two new HIV-1 circulating recombinant forms (CRF87_cpx and CRF88_BC) from reported unique recombinant forms in Asia. AIDS Res. Hum. Retroviruses, 33 (4), 353-358. doi: 10.1089/aid.2016.0252.
12. De Oliveira F., Cappy P., Lemee V. et al. (2018). Detection of numerous HIV-1/MO recombinants in France. AIDS, 32 (10), 1289-1299. doi: 10.1097/QAD.0000000000001814.
13. Ogawa S., Hachiya A., Hosaka M. et al. (2016). A novel drug-resistant HIV-1 circulating recombinant form CRF76_01B identified by near full-length genome analysis. AIDS Res. Hum. Retroviruses, 32 (3), 284-289. doi: 10.1089/AID.2015.0304.
14. Ulyanova Y.S., Gashnikova N.M., Ivlev V.V. et al. (2019). Clinical and laboratory characterictic of acute HIV-infection in adult residents of Novosibirsk Region. Journal Infectology, 11 (2), 40-44. doi: org/10.22625/2072-6732-2019-11-2-40-44.
15. Suligoi B., Raimondo M., Fanales-Belasio E., Butto S. (2010). The epidemic of HIV infection and AIDS, promotion of testing, and innovative strategies. Ann. Ist. Super Sanita, 46, 15-23.
16. Azevedo-Pereira J.M., Santos-Costa Q. (2016). HIV interaction with human host: HIV-2 as a model of a less virulent infection. AIDS Rev., 18 (1), 44-53.
17. Palmer C.S., Henstridge D.C., Yu D. et al. (2016). Emerging role and characterization of immunome-tabolism: Relevance to HIV pathogenesis, serious non-aids events, and a cure. J. Immunol., 196 (11), 4437-4444. doi: 10.4049/jimmunol.1600120.
18. Pedro K.D., Henderson A.J., Agosto L.M. (2019). Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res., 265, 115-121. doi: 10.1016/j.virusres.2019.03.014.
19. Bruel T., Schwartz O. (2018). Markers of the HIV-1 reservoir: facts and controversies. Curr. Opin. HIV AIDS, 13 (5), 383-388. doi: 10.1097/COH.0000000000000482.
20. Wallet C., De Rovere M., Van Assche J. et al. (2019). Microglial cells: The main HIV-1 reservoir in the brain. Front. Cell. Infect. Microbiol., 9, 362. doi: 10.3389/fcimb.2019.00362.
21. Yamazaki S., Kondo M., Sudo K. et al. (2016). Qualitative real-time PCR assay for HIV-1 and HIV-2 RNA. Jpn. J. Infect. Dis., 69 (5), 367-372. doi: 10.7883/yoken.JJID.2015.309.
22. Hecht F.M., Busch M.P., Rawal B. et al. (2002). Use of laboratory tests and clinical symptoms for identification of primary HIV infection. AIDS, 16, 11191129.
23. Fiebig E.W., Wright D.J., Rawal B.D. et al. (2003). Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS, 17, 1871-1879.
24. Conway J.M., Perelson A.S. (2016). Residual viremia in treated HIV+ individuals. PLoS Comput. Biol., 12 (1), e1004677. doi: 10.1371/journal.pcbi.1004677.
25. Robb M.L., Eller L.A., Kibuuka H. et al. (2016). Prospective study of acute HIV-1 infection in adults in East Africa and Thailand. N. Engl. J. Med., 374 (22), 2120-2130. doi: 10.1056/NEJMoa1508952.
26. McBrien J.B., Kumar N.A., Silvestri G. (2018). Mechanisms of CD8+ T cell-mediated suppression of HIV/ SIV replication. Eur. J. Immunol., 48 (6), 898-914. doi: 10.1002/eji.201747172.
27. Allen T.M., O’Connor D.H., Jing P. et al. (2000). Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary virae-mia. Nature, 407, 386-390.
28. Spivak A.M., Sydnor E.R., Blankson J.N., Gallant J.E. (2010). Seronegative HIV-1 infection: a review of the literature. AIDS, 24 (10), 1407-1414. doi: 10.1097/QAD.0b013e32833ac65c.
29. Newton P.J. (2018). HIV in acute care. Acute Med., 17 (2), 61.
30. Schuster C., Mayer F.J., Wohlfahrt C. et al. (2018). Acute HIV infection results in subclinical inflammatory cardiomyopathy. J. Infect. Dis., 218 (3), 466470. doi: 10.1093/infdis/jiy183.
31. Keet I.P., Krijnen P., Koot M. et al. (1993). Predictors of rapid progression to AIDS in HIV-1 seroconvert-ers. AIDS, 7, 51-57.
32. Gupta K.K. (1993). Acute immunosuppression with HIV seroconversion. N. Engl J. Med., 328, 288-289.
33. Lange C.G., Lederman M.M., Medvik K. et al. (2003). CD4+ T-cell count and numbers of CD28+ CD4+ T-cells predict functional responses to immunizations in chronic HIV-1 infection. AIDS, 17, 20152023.
34. Bui V.C., Nguyen T.H. (2017). Insights into the interaction of CD4 with anti-CD4 antibodies. Immunobiology, 222 (2), 148-154. doi: 10.1016/j.im-bio.2016.10.010.
35. Ford E.S., Puronen C.E., Sereti I. (2009). Immuno-pathogenesis of asymptomatic chronic HIV infection: the calm before the storm. Curr. Opin. HIV AIDS, 4, 206-214.
36. Porichis F., Hart M.G., Massa A. et al. (2018). Immune checkpoint blockade restores HIV-specific CD4 T cell help for NK cells. J. Immunol., 201 (3), 971-981. doi: 10.4049/jimmunol.1701551.
37. Chung A., Rollman E., Johansson S., Kent S.J., Stratov I. (2008). The utility of ADCC responses in HIV infection. Curr. HIV Res., 6, 515-519.
38. Bangham C.R. (2009). CTL quality and the control of human retroviral infections. Eur. J. Immunol., 39, 1700-1712.
39. Boelen L., Debebe B., Silveira M. et al. (2018). Inhibitory killer cell immunoglobulin-like receptors strengthen CD8+ T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci. Immunol., 3 (29). eaao2892. doi: 10.1126/sciimmunol.aao2892.
40. Baker B.M., Block B.L., Rothchild A.C., Walker B.D. (2009). Elite control of HIV infection: implications for vaccine design. Expert Opin. Biol. Ther., 9, 5569.
41. Saksena N.K., Rodes B., Wang B., Soriano V. (2007). Elite HIV controllers: myth or reality? AIDS Rev., 9, 195-207.
42. Gebara N.Y., El Kamari V., Rizk N. (2019). HIV-1 elite controllers: an immunovirological review and clinical perspectives. J. Virus Erad., 5 (3), 163-166.
43. Mehandru S., Poles M.A., Tenner-Racz K. et al. (2004). Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med., 200, 761-770.
44. Feria M.G., Taborda N.A., Hernandez J.C., Rugeles M.T. (2017). Effects of prebiotics and probiotics on gastrointestinal tract lymphoid tissue in HIV infected patients. Rev. Med. Chil., 145 (2), 219-229. doi: 10.4067/S0034-98872017000200010.
45. Brooks J.T., Kaplan J.E., Holmes K.K. et al. (2009). HIV-associated opportunistic infections — going, going, but not gone: the continued need for prevention and treatment guidelines. Clin. Infect. Dis., 48, 609-611.
46. Reid E., Suneja G., Ambinder R.F. et al. (2018). Cancer in people living with HIV, version 1.2018, NCCN Clinical Practice Guidelines in oncology. J. Natl. Compr. Canc. Netw., 16 (8), 986-1017. doi: 10.6004/jnccn.2018.0066.
47. Clifford G.M., Franceschi S. (2009). Cancer risk in HIV-infected persons: influence of CD4(+) count. Future Oncol., 5, 669-678.
48. Parikh U.M., McCormick K., van Zyl G., Mellors J.W. (2017). Future technologies for monitoring HIV drug resistance and cure. Curr. Opin. HIV AIDS, 12 (2), 182-189. doi: 10.1097/COH.0000000000000344.
49. Alteri C., Svicher V., Gori C. et al. (2009). Characterization of the patterns of drug-resistance mutations in newly diagnosed HIV-1 infected patients naive to the antiretroviral drugs. BMC Infect. Dis., 9, 111. doi: 10.1186/1471-2334-9-111.
50. World Health Organization. HIV/AIDS. HIV drug resistance report 2017. Retrieved on November 10, 2020 from https://www.who.int/hiv/pub/drugresis-tance/hivdr-report-2017/en/.
51. Russian database of HIV resistance to antiretroviral drugs. Retrieved on November 10, 2020 from www. hivresist.ru. In Russ.
52. Naziri H., Baesi K., Moradi A. et al. (2016). Antiretroviral drug resistance mutations in naive and experienced patients in Shiraz, Iran, 2014. Arch. Virol., 161 (9), 2503-2509. doi: 10.1007/s00705-016-2955-z.
53. Liu Z., Yedidi R.S., Wang Y. et al. (2013). Insights into the mechanism of drug resistance: X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex. Biochem. Biophys. Res. Commun., 431 (2), 232-238. doi: 10.1016/j.bbrc.2012.12.127.
54. Napolitano L.A., Grant R.M., Deeks S.G. et al. (2001). Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat. Med., 7, 73-79.
55. Hegedus A., Kavanagh Williamson M., Huthoff H. (2014). HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T-cells. Retrovirology, 11, 98.
56. Loisel-Meyer S., Swainson L., Craveiro M. et al. (2012). Glut1-mediated glucose transport regulates HIV infection. Proc. Natl. Acad. Sci. USA, 109, 2549-2554.
57. Pearce E.L., Poffenberger M.C., Chang C.-H., Jones R.G. (2013). Fueling immunity: insights into metabolism and lymphocyte function. Science, 342, 1242454.
58. Hollenbaugh J.A., Munger J., Kim B. Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis // Virology. 2011. Vol. 415. P. 153-159.
59. Freemerman A.J., Johnson A.R., Sacks G.N. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype // J. Biol. Chem. 2014. Vol. 289. P. 7884-7896.
Review
For citations:
Kapustin D.V., Ul’yanova Ya.S., Karpovich G.S., Krasnova E.I., Kuznetsova V.G., Izvekova I.Ya. New aspects of the etiology and pathogenesis of HIV infection (literature review). Journal of Siberian Medical Sciences. 2021;(1):92-104. https://doi.org/10.31549/2542-1174-2021-1-92-104