Tissue and ultrastructural analysis of the liver of prepubertal rats under subtoxic exposure to cadmium and lead
https://doi.org/10.31549/2542-1174-2022-6-1-80-92
Abstract
Using light and electron microscopy, the effect of intoxication with cadmium sulfate (Cd) and lead acetate (Pb) for 3 weeks on the architectonics of the liver parenchyma and ultrastructural features of hepatocytes of 40 prepubertal male Wistar rats was studied, taking into account the model of the classical hepatic lobule. Animals were divided into 4 groups: 1st – control; 2nd – cadmium sulfate solution at a dose of 0.5 mg/kg; 3rd – lead acetate solution 10 mg/kg; 4th – a combination of these solutions. According to stereological analysis of semi-thin sections, statistically significant indicators of periportal zones reflect an increase in the volume of hepatocytes when exposed to Cd (2nd and 4th groups). In all groups, with the exception of the 3rd one (Pb), an increase in the parenchymal compartment in the porto-central gradient was revealed, indicating the formation of hepatocellular ballooning. In all experimental groups, for the periportal zone of the hepatic lobule, a characteristic feature of the ultrastructure of hepatocytes was a statistically significant decrease in the volumetric density of the endoplasmic reticulum; for the centrilobular zone – of mitochondria; for the perivenular zone – mitochondria and nuclei of hepatocytes. The formation of autophagosomes with signs of predominantly mitochondrial utilization attracted attention in groups exposed to Pb. Pathological changes are compensated by increased transsinusoidal metabolism and complexes of biosynthesis organelles.
About the Authors
P. A. ElyasinRussian Federation
Cand. Sci. (Med.), Assistant Professor, Yu.I. Borodin Department of Human Anatomy
52, Krasny prosp., Novosibirsk, 630091, Russia
S. V. Zalavina
Russian Federation
Dr. Sci. (Med.), Professor, Head, M.Ya. Subbotin Department of Histology, Embryology and Cytology
52, Krasny prosp., Novosibirsk, 630091, Russia
A. N. Mashak
Russian Federation
Dr. Sci. (Med.), Professor, Head, Yu.I. Borodin Department of Human Anatomy
52, Krasny prosp., Novosibirsk, 630091, Russia
Yu. R. Ravilova
Russian Federation
Cand. Sci. (Med.), Senior Lecturer, Department of Pharmacology, Clinical Pharmacology and Evidence-Based Medicine
52, Krasny prosp., Novosibirsk, 630091, Russia
S. V. Mashak
Russian Federation
Dr. Sci. (Med.), Professor, M.Ya. Subbotin Department of Histology, Embryology and Cytology
52, Krasny prosp., Novosibirsk, 630091, Russia
S. V. Aidagulova
Russian Federation
Dr. Sci. (Biol.), Professor, Head, Laboratory of Cell Biology and Fundamentals of Reproduction, Central Research Laboratory
52, Krasny prosp., Novosibirsk, 630091, Russia
References
1. Mitra P., Sharma S., Purohit P., Sherma P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci. 2017;54(7–8):506–528. doi: 10.1080/10408363.2017.1408562.
2. Obeng-Gyasi E. Sources of lead exposure in various countries. Rev. Environ. Health. 2019;26(34):25–34. doi: 10.1515/reveh-2018-0037.
3. Balali-Mood M., Naseri K., Tahergorabi Z., Khazdair M.R., Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021;12:643972. doi: 10.3389/fphar.2021.643972.
4. Pi H., Xu S., Reiter R.J. et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015;11(7):1037–1051. doi: 10.1080/15548627.2015.1052208.
5. Genchi G., Sinicropi M.S., Lauria G., Carocci A., Catalano A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health. 2020;17(11):3782. doi: 10.3390/ijerph17113782.
6. Ivashkin V.T., Nepomnyashchykh G.I., Aydagulova S.V. et al. Drug-induced lesion of the liver: general-purpose morphological markers. Russ. J. of Gastroenterology, Hepatology, Coloproctology. 2009;19(2):20–29. (In Russ.)
7. Ueno T., Komatsu M. Autophagy in the liver: Functions in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2017;14(3):170–184. doi: 10.1038/nrgastro.2016.185.
8. Weiskirchen R., Tacke F. Relevance of autophagy in parenchymal and non-parenchymal liver cells for health and disease. Cells. 2019;8(1):16. doi: 10.3390/cells8010016.
9. Narkevich A.N., Vinogradov K.A., Grjibovskiy A.M. Multiple comparisons in biomedical research: the problem and solutions. Human Ecology. 2020;10:55–64. doi: 10.33396/1728-08-69-2020-10-55-64. (In Russ.)
10. Petrie A., Sabin K. (2019). Medical Statistics at a Glance (V.P. Leonov, Trans. from Engl.). Moscow: GEOTAR-Media. 216 p.
11. Nepomnyashchikh G.I., Aidagulova S.V., Postnikova O.A. et al. Morphogenesis of chronic hepatitis C and infectious-viral liver cirrhosis. Clinical Perspectives of Gastroenterology, Hepatology. 2012;2:13–21. (In Russ.)
12. Xiao C., Liu Y., Xie C. et al. Cadmium induces histone H3 lysine methylation by inhibiting histone demethylase activity. Toxicol. Sci. 2015;145(1):80–89. doi: 10.1093/toxsci/kfv019.
13. Liu Z., Cai L., Liu Y., Chen W., Wang Q. Association between prenatal cadmium exposure and cognitive development of offspring: A systematic review. Environ. Pollut. 2019;254(PtB):113081. doi: 10.1016/j.envpol.2019.113081.
Review
For citations:
Elyasin P.A., Zalavina S.V., Mashak A.N., Ravilova Yu.R., Mashak S.V., Aidagulova S.V. Tissue and ultrastructural analysis of the liver of prepubertal rats under subtoxic exposure to cadmium and lead. Journal of Siberian Medical Sciences. 2022;(1):80-92. https://doi.org/10.31549/2542-1174-2022-6-1-80-92