Etiopathogenetic aspects of the use of probiotics in obese and overweight patients
https://doi.org/10.31549/2542-1174-2025-9-2-97-111
Abstract
In recent decades, obesity and overweight have become one of the significant problems of global public health. The steady growth of morbidity, development of complications and comorbid conditions, disability and an increase in mortality in obese patients indicate the need to develop new methods of treatment and prevention of this disease. It has been proven that some probiotics contribute to weight loss. The review presents an analysis of data from modern domestic and foreign studies concerning the use of certain bacterial strains in obese and overweight people for preventive and therapeutic purposes. Both classic probiotics with anorexigenic effect (Bifidobacterium spp., Lactobacillus spp., Saccharomyces boulardii) and next-generation ones (Akkermansia muciniphila, Enterococcus spp., Faecalibacterium prausnitzii, Bacteroides spp., Streptococcus spp., Eubacterium rectale, Blautia spp., Christensenella minuta) are considered. The main pathogenetic aspects of weight loss when using these probiotics (reduced permeability and enhanced protective functions of the intestinal epithelium, effects on the gut microbiome, anti-inflammatory activity) are described.
About the Authors
A. E. KaravozovaRussian Federation
Anastasia E. Karavozova – 1st year Resident in the specialty “Pediatrics”, Department of Propedeutics of Childhood Diseases
52, Krasny prosp., Novosibirsk, 630091
V. E. Menshchikova
Russian Federation
Valeria E. Menshchikova – 1st year Post-graduate Student in the specialty “Pediatrics”, Department of Propedeutics of Pediatric Diseases
52, Krasny prosp., Novosibirsk, 630091
T. V. Kartseva
Russian Federation
Tatiana V. Kartseva – Dr. Sci. (Med.), Associate Professor, Head, Department of Propedeutics of Pediatric Diseases
52, Krasny prosp., Novosibirsk, 630091
T. I. Ryabichenko
Russian Federation
Tatiana I. Ryabichenko – Dr. Sci. (Med.), Leading Researcher, Laboratory of Immunology
Novosibirsk
O. O. Obukhova
Russian Federation
Olga O. Obukhova – Dr. Sci. (Med.), Head, Laboratory of Immunology
Novosibirsk
References
1. Pinart M., Dötsch A., Schlicht K. et al. Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis // Nutrients. 2021;14(1):12. DOI: 10.3390/nu14010012.
2. World Health Organization. One in eight people are now living with obesity. URL: https://www.who.int/ru/news/item/01-03-2024-one-in-eight-people-are-now-living-with-obesity (дата обращения: 30.01.2025).
3. Kelly T., Yang W., Chen C.S. et al. Global burden of obesity in 2005 and projections to 2030 // Int. J. Obes. (Lond). 2008;32(9):1431-1437. DOI: 10.1038/ijo.2008.102.
4. Borgeraas H., Johnson L.K., Skattebu J. et al. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: А systematic review and meta-analysis of randomized controlled trials // Obes. Rev. 2018;19(2):219-232. DOI: 10.1111/obr.12626.
5. Liu B.N., Liu X.T., Liang Z.H., Wang J.H. Gut microbiota in obesity // World J. Gastroenterol. 2021;27(25):3837-3850. DOI: 10.3748/wjg.v27.i25.3837.
6. Vallianou N.G., Kounatidis D., Tsilingiris D. et al. The role of next-generation probiotics in obesity and obesity-associated disorders: current knowledge and future perspectives // Int. J. Mol. Sci. 2023;24(7):6755. DOI: 10.3390/ijms24076755.
7. Hill C., Guarner F., Reid G. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic // Nat. Rev. Gastroenterol. Hepatol. 2014;11(8):506-514. DOI: 10.1038/nrgastro.2014.66.
8. Amabebe E., Robert F.O., Agbalalah T. et al. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism // Br. J. Nutr. 2020;123(10):1127-1137. DOI: 10.1017/S0007114520000380.
9. Álvarez-Arraño V., Martín-Peláez S. Effects of probiotics and synbiotics on weight loss in subjects with over-weight or obesity: А systematic review // Nutrients. 2021;13(10):3627. DOI: 10.3390/nu13103627.
10. Uusitupa H.M., Rasinkangas P., Lehtinen M.J. et al. Bifidobacterium animalis subsp. lactis 420 for metabolic health: review of the research // Nutrients. 2020;12(4):892. DOI: 10.3390/nu12040892.
11. Koutnikova H., Genser B., Monteiro-Sepulveda M. et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: А systematic review and meta-analysis of randomised controlled trials // BMJ Open. 2019;9(3):e017995. DOI: 10.1136/bmjopen-2017-017995.
12. Da Silva C.C., Monteil M.A., Davis E.M. Overweight and obesity in children are associated with an abundance of Firmicutes and reduction of Bifidobacterium in their gastrointestinal microbiota // Child Obes. 2020;16(3):204-210. DOI: 10.1089/chi.2019.0280.
13. Michels N., Zouiouich S., Vanderbauwhede B. et al. Human microbiome and metabolic health: An overview of systematic reviews // Obes. Rev. 2022;23(4):e13409. DOI: 10.1111/obr.13409.
14. Nobili A., Pane M., Skvortsova M. et al. Innovative biomarkers for obesity and type 1 diabetes based on Bifidobacterium and metabolomic profiling // Microorganisms. 2024;12(5):931. DOI: 10.3390/microorganisms12050931.
15. Kadooka Y., Sato M., Imaizumi K. et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial // Eur. J. Clin. Nutr. 2010;64(6):636-643. DOI: 10.1038/ejcn.2010.19.
16. Aronsson L., Huang Y., Parini P. et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANG-PTL4) // PLoS One. 2010;5(9):e13087. DOI: 10.1371/journal.pone.0013087.
17. Ahn H.Y., Kim M., Chae J.S. et al. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia // Atherosclerosis. 2015;241(2):649-656. DOI: 10.1016/j.atherosclerosis.2015.06.030.
18. Li C.P., Chen C.C., Hsiao Y. et al. The role of Lactobacillus plantarum in reducing obesity and inflammation: A meta-analysis // Int. J. Mol. Sci. 2024; 25(14):7608. DOI: 10.3390/ijms25147608.
19. Molina-Tijeras J.A., Diez-Echave P., Vezza T. et al. Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis // Pharmacol. Res. 2021;167:105471. DOI: 10.1016/j.phrs.2021.105471.
20. Drissi F., Merhej V., Angelakis E. et al. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection // Nutr. Diabetes. 2014;4(2):e109. DOI: 10.1038/nutd.2014.6.
21. Kang Y., Kang X., Yang H. et al. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability //Pharmacol. Res. 2022;175:106020. DOI: 10.1016/j.phrs.2021.106020.
22. Barssotti L., Abreu I.C.M.E., Brandão A.B.P. et al. Saccharomyces boulardii modulates oxidative stress and renin angiotensin system attenuating diabetes-induced liver injury in mice // Sci. Rep. 2021;11(1):9189. DOI: 10.1038/s41598-021-88497-w.
23. Rondanelli M., Miraglia N., Putignano P. et al. Effects of 60-day Saccharomyces boulardii and superoxide dismutase supplementation on body composition, hunger sensation, pro/antioxidant ratio, inflammation and hormonal lipo-metabolic biomarkers in obese adults: A double-blind, placebo-controlled trial // Nutrients. 2021;13(8):2512. DOI: 10.3390/nu13082512.
24. Zhao Y., Yang H., Wu P. et al. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders // Virulence. 2024;15(1):2375555. DOI: 10.1080/21505594.2024.2375555.
25. Rodrigues V.F., Elias-Oliveira J., Pereira Í.S. et al. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes // Front. Immunol. 2022;13:934695. DOI: 10.3389/fimmu.2022.934695.
26. Huang J., Huang J., Yin T. et al. Enterococcus faecium R0026 сombined with Bacillus subtilis R0179 prevent obesity-associated hyperlipidemia and modulate gut microbiota in C57BL/6 mice // J. Microbiol. Biotechnol. 2021;31(2):181-188. DOI: 10.4014/jmb.2009.09005.
27. Quan L.H., Zhang C., Dong M. et al. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation // Gut. 2020;69(7):1239-1247. DOI: 10.1136/gutjnl-2019-319114.
28. Ondee T., Pongpirul K., Janchot K. et al. Lactiplantibacillus plantarum dfa1 outperforms Enterococcus faecium dfa1 on anti-obesity in high fat-induced obesity mice possibly through the differences in gut dysbiosis attenuation, despite the similar anti-inflammatory properties // Nutrients. 2021;14(1):80. DOI: 10.3390/nu14010080.
29. Migacheva N.B., Skvortsova O.V., Lyamin A.V. et al. Assessment of species diversity of anaerobic intestinal microbiota in children and adolescents with exogenous constitutional obesity. Problems of Nutrition. 2024;93(3):14-22. DOI: 10.33029/0042-8833-2024-93-3-14-22. (In Russ.)
30. Leylabadlo H.E., Ghotaslou R., Feizabadi M.M. et al. The critical role of Faecalibacterium prausnitzii in human health: An overview // Microb. Pathog. 2020;149:104344. DOI: 10.1016/j.mic-path.2020.104344.
31. Maioli T.U., Borras-Nogues E., Torres L. et al. Possible benefits of Faecalibacterium prausnitzii for obesity-associated gut disorders // Front. Pharmacol. 2021;12:740636. DOI: 10.3389/fphar.2021.740636.
32. Vallianou N., Christodoulatos G.S., Karampela I. et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: Current evidence and perspectives // Biomolecules. 2021;12(1):56. DOI: 10.3390/biom12010056.
33. Yang M., Wang J.H., Shin J.H. et al. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice // Front. Endocrinol. (Lausanne). 2023;14:1220044. DOI: 10.3389/fendo.2023.1220044.
34. Balamurugan R., George G., Kabeerdoss J. et al. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children // Br. J. Nutr. 2010;103(3):335-338. DOI: 10.1017/S0007114509992182.
35. Rodríguez-Lara A., Plaza-Díaz J., López-Uriarte P. et al. Fiber consumption mediates differences in several gut microbes in a subpopulation of young Mexican adults // Nutrients. 2022;14(6):1214. DOI: 10.3390/nu14061214.
36. Crovesy L., Masterson D., Rosado E.L. Profile of the gut microbiota of adults with obesity: a systematic review // Eur. J. Clin. Nutr. 2020;74(9):1251-1262. DOI: 10.1038/s41430-020-0607-6.
37. Cheng J., Hu J., Geng F., Nie S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health // Food Sci. Hum. Welln. 2022;11(5):1101-1110. DOI: 10.1016/j.fshw.2022.04.002.
38. Ryu S.W., Moon J.C., Oh B.S. et al. Anti-obesity activity of human gut microbiota Bacteroides stercoris KGMB02265 // Arch. Microbiol. 2023;206(1):19. DOI: 10.1007/s00203-023-03750-2.
39. Wen X., Feng X., Xin F. et al. B. vulgatus ameliorates high-fat diet-induced obesity through modulating intestinal serotonin synthesis and lipid absorption in mice // Gut Microbes. 2024;16(1):2423040. DOI: 10.1080/19490976.2024.2423040.
40. Fabersani E., Portune K., Campillo I. et al. Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice // Sci. Rep. 2021;11(1):11788. DOI: 10.1038/s41598-021-90888-y.
41. Vander Wyst K.B., Ortega-Santos C.P., Toffoli S.N. et al. Diet, adiposity, and the gut microbiota from infancy to adolescence: A systematic review // Obes. Rev. 2021;22(5):e13175. DOI: 10.1111/obr.13175.
42. Ma M., Su J., Wang Y. et al. Association of body mass index and intestinal (faecal) Streptococcus in adults in Xining city, China P.R. // Benef. Microbes. 2022;13(6):465-472. DOI: 10.3920/BM2021.0046.
43. Zhou M., Peng C., Miao Z. et al. Improved diet-based nutritional interventions can improve childhood obesity with the synergistic regulation of gut microbiota // Benef. Microbes. 2024;15(5):495-513. DOI: 10.1163/18762891-bja00019.
44. Squillario M., Bonaretti C., La Valle A. et al. Gut-microbiota in children and adolescents with obesity: inferred functional analysis and machine-learning algorithms to classify microorganisms // Sci. Rep. 2023;13(1):11294. DOI: 10.1038/s41598-023-36533-2.
45. Palmas V., Pisanu S., Madau V. et al. Gut microbiota markers associated with obesity and overweight in Italian adults // Sci. Rep. 2021;11(1):5532. DOI: 10.1038/s41598-021-84928-w.
46. Gurova M.M., Novikova V.P., Khavkin A.I. The state of gut microbiota and clinical-metabolic features in children with overweight and obesity. Russian Journal of Evidence-Based Gastroenterology. 2018;7(3):4-10. DOI: 10.17116/dokgastro201870314. (In Russ.)
47. Drapkina O.M., Korneeva O.N. Gut microbiota and obesity: Pathogenetic relationships and ways to normalize the intestinal microflora. Therapeutic Archive. 2016;88(9):135-142. DOI: 10.17116/ter-arkh2016889135-142. (In Russ.)
48. Rondanelli M., Gasparri C., Peroni G. et al. The potential roles of very low calorie, very low calorie ketogenic diets and very low carbohydrate diets on the gut microbiota composition // Front. Endocrinol. (Lausanne). 2021;12:662591. DOI: 10.3389/fendo.2021.662591.
49. Yin X.Q., An Y.X., Yu C.G. et al. The association between fecal short-chain fatty acids, gut microbiota, and visceral fat in monozygotic twin pairs // Diabetes Metab. Syndr. Obes. 2022;15:359-368. DOI: 10.2147/DMSO.S338113.
50. Olivares P., Pacheco A., Aranha L. et al. Gut microbiota of adults with different metabolic phenotypes // Nutrition. 2021 Oct;90:111293. DOI: 10.1016/j.nut.2021.111293.
51. Alili R., Belda E., Fabre O. et al. Characterization of the gut microbiota in individuals with overweight or obesity during a real-world weight loss dietary program: A focus on the Bacteroides 2 enterotype // Biomedicines. 2021;10(1):16. DOI: 10.3390/biomedicines10010016.
52. Egshatyan L.V., Kushkhanashkhova D.А., Ermilova E.S., Askerkhanov R.G. Gut microbiota in obese patients and after bariatric surgery. Endocrine Surgery. 2019;13(1):5-16. DOI: 10.14341/serg10112. (In Russ.)
53. Chanda W., Jiang H., Liu S.J. The ambiguous correlation of Blautia with obesity: A systematic review // Microorganisms. 2024;12(9):1768. DOI: 10.3390/microorganisms12091768.
54. Holmberg S.M., Feeney R.H., Prasoodanan P.K.V. et al. The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids // Nat. Commun. 2024;15(1):3502. DOI: 10.1038/s41467-024-47594-w.
55. Li X., Li Z., He Y. et al. Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis // Peer J. 2020;8:e9591. DOI: 10.7717/peerj.9591.
56. Mazier W., Le Corf K., Martinez C. et al. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases // Cells. 2021;10(4):823. DOI: 10.3390/cells10040823.
Review
For citations:
Karavozova A.E., Menshchikova V.E., Kartseva T.V., Ryabichenko T.I., Obukhova O.O. Etiopathogenetic aspects of the use of probiotics in obese and overweight patients. Journal of Siberian Medical Sciences. 2025;(2):97-111. (In Russ.) https://doi.org/10.31549/2542-1174-2025-9-2-97-111