Tetracycline attenuates hippocampal and cerebellar damage in a weight-drop model of mild traumatic brain injury in adolescent rats: A candidate for drug repurposing?
https://doi.org/10.31549/2542-1174-2025-9-4-105-120
Abstract
Introduction. Mild traumatic brain injury (mTBI) represents a critical risk factor for disrupted neurodevelopment during adolescence, particularly affecting brain regions involved in cognition and motor function. Current treatments, which are mostly derived from adult studies, highlight a gap in addressing adolescent needs, warranting the need for targeted therapeutic strategies.
Aim. This study explores the potential neuroprotective effects of tetracycline in adolescent Wistar rats following mTBI, focusing on damage to the hippocampus and cerebellar cortex. mTBI poses a significant risk to brain development in adolescents.
Materials and methods . Fifteen rats were divided into three groups: a control group, an injury group only, and an injury group treated with tetracycline at a daily dose of 44,3 mg/kg body weight. mTBI was induced using a weight-drop method, and cognitive and motor functions were assessed through T-maze and beam-walking tests.
Results . Histological analysis using hematoxylin and eosin staining revealed that untreated rats with mTBI showed significant neural degeneration and disrupted brain architecture, alongside impaired cognitive and motor performance. In contrast, rats treated with tetracycline exhibited reduced neuronal damage and improved performance, although not fully restored to control levels. The treatment also appeared to lower inflammation and oxidative stress in the brain.
Conclusion. These findings suggest that tetracycline has neuroprotective potential in adolescent rats with mTBI, supporting its consideration as a therapeutic target for drug repurposing.
About the Authors
F. A. AbariboteNigeria
Fiezibe Ambrose Abaribote – Bachelor of Science, Research Assistant
Bayelsa State, Wilberforce Island
F. Ch. Nwagor
Nigeria
Faithful Chris Nwagor – Bachelor of Science, Research Assistant
Bayelsa State, Wilberforce Island
G. O. Onyeke
Nigeria
Grace Ojoma Onyeke – Bachelor of Science, Research Assistant
Bayelsa State, Wilberforce Island
Ch. A. Oyinbo
Nigeria
Charles Aidemise Oyinbo – PhD, Associate Professor
Bayelsa State, Wilberforce Island
References
1. Maas A.I.R., Menon D.K., Adelson P.D. et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research // Lancet Neurol. 2017;16(12):987-1048. DOI: 10.1016/S1474-4422(17)30371-X.
2. Pearn M.L., Niesman I.R., Egawa J. et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics // Cell. Mol. Neurobiol. 2017;37(4):571-585. DOI: 10.1007/s10571-016-0400-1.
3. Gardner R.C., Yaff e K. Epidemiology of mild traumatic brain injury and neurodegenerative disease // Mol. Cell. Neurosci. 2015;66(Pt B):75-80. DOI: 10.1016/j.mcn.2015.03.001.
4. Haarbauer-Krupa J., Arbogast K.B., Metzger K.B. et al. Variations in mechanisms of injury for children with concussion // J. Pediatr. 2018;197:241-248e. DOI: 10.1016/j.jpeds.2018.01.075.
5. Bramlett H.M., Dietrich W.D. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes // J. Neurotrauma. 2015;32(23):1834-1848. DOI: 10.1089/neu.2014.3352
6. Giza C.C., Hovda D.A. The new neurometabolic cascade of concussion // Neurosurgery. 2014;75(4):S24-33. DOI: 10.1227/NEU.0000000000000505.
7. Goh M.S.L., Looi D.S.H., Goh J.L. et al. The impact of traumatic brain injury on neurocognitive outcomes in children: a systematic review and meta-analysis // J. Neurol. Neurosurg. Psychiatry. 2021; Mar 31:jnnp-2020-325066. DOI: 10.1136/jnnp-2020-325066.
8. Duhaime A.C., Ferry B. Traumatic brain injury in the developing brain: neurobiological mechanisms and clinical challenges // Dev. Neurosci. 2017;39(1-4):1-4.
9. Lumba-Brown A., Yeates K.O., Sarmiento K. et al. Diagnosis and management of mild traumatic brain injury in children: a systematic review // JAMA Pediatr. 2018;172(11):e182847. DOI: 10.1001/jamapediat-rics.2018.2847.
10. Carroll L.J., Cassidy J.D., Peloso P.M. et al. Prognosis for mild traumatic brain injury: results of the WHO Collaborating Center Task Force on Mild Traumatic Brain Injury // J. Rehabil. Med. 2004;43(43 Suppl):84-105. DOI: 10.1080/16501960410023859.
11. Mayer A.R., Quinn D.K., Master C.L. The spectrum of mild traumatic brain injury: A review // Neurology. 2017;89(6):623-632. DOI: 10.1212/WNL.0000000000004214.
12. Sercy E., Orlando A., Carrick M. et al. Long-term mortality and causes of death among patients with mild traumatic brain injury: a 5-year multicenter study // Brain Inj. 2020;34(4):556-566. DOI: 10.1080/02699052.2020.1725981.
13. Reagan-Shaw S., Nihal M., Ahmad N. Dose translation from animal to human studies revisited // FASEB J. 2008;22(3):659-661. DOI: 10.1096/fj.07-9574LSF.
14. Scott G., Zetterberg H., Jolly. A. et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration // Brain. 2018;141(2), 459-471. DOI: 10.1093/brain/awx339.
15. Andreollo N.A., Santos E.F., Araújo M.R., Lopes L.R. Rat’s age versus human’s age: what is the relationship? // Arq. Bras. Cir. Dig. 2012;25(1):49-51. DOI: 10.1590/s0102-67202012000100011.
16. Keenan K.P., Laroque P., Ballam G.C. et al. The eff ects of diet, ad libitum overfeeding, and moderate dietary restriction on the rodent bioassay: the uncontrolled variable in safety assessment // Toxicol. Pathol. 1996;24(6):757-768. DOI: 10.1177/019262339602400620.
17. Sengupta P. The laboratory rat: relating its age with humans // Int. J. Prev. Med. 2013; 4(6): 624-630.
18. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press, 2010.
19. Kane M.J., Angoa-Pérez M., Briggs D.I. et al. A mouse model of human repetitive mild traumatic brain injury // J. Neurosci Methods. 2012;203(1):41-49. DOI: 10.1016/j.jneumeth.2011.09.003.
20. Xiong Y., Mahmood A., Chopp M. Animal mo dels of traumatic brain injury // Nat. Rev. Neurosci. 2013;14(2):128-142. DOI: 10.1038/nrn3407.
21. Deacon R.M.J., Rawlins J.N.P. T-maze alternation in the rodent // Nat. Protoc. 2006;1(1):7-12. DOI: 10.1038/nprot.2006.2.
22. d’Isa R., Comi G., Leocani L. Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation Tmaze // Sci. Rep. 2021;11(1):21177. DOI: 10.1038/s41598-021-00402-7.
23. Luong T.N., Carlisle H.J., Southwell A., Patterson P.H. Assessment of motor balance and coordination in mice using the balance beam // J. Vis. Exp. 2011;49:2376. DOI: 10.3791/2376.
24. Bancroft J.D., Gamble M. Theory and Practice of Histological Techniques. 6th ed. Edinburgh: Churchill Li vingstone, 2008.
25. Fischer A.H., Jacobson K.A., Rose J., Zeller R. Hematoxylin and eosin staining of tissue and cell sections // CSH Protoc. 2008;3(5):pdb.prot4986. DOI: 10.1101/pdb.prot4986.
26. Kharatishvili I., Pitkänen A. Association of the severity of cortical damage with spontaneous seizures and neuronal hyperexcitability after traumatic brain injury // Epilepsy Res. 2010;90(1-2):47-59. DOI: 10.1016/j.eplepsyres.2010.03.007.
27. Browne K.D., Chen X.H., Meaney D.F., Smith D.H. Mild traumatic brain injury and diff use axonal injury in swine // J. Neurotrauma. 2011;28(9):1747-1755. DOI: 10.1089/neu.2011.1913.
28. Osier N.D., Dixon C.E. The controlled cortical impact model: applications, considerations for researchers, and future directions // Front. Neurol. 2016;7:134. DOI: 10.3389/fneur.2016.00134.
29. Plane J.M., Shen Y., Pleasure D.E., Deng W. Prospects for minocycline neuroprotection // Arch. Neurol. 2010;67(12):1442-1448. DOI: 10.1001/archneurol.2010.191.
30. Bye N., Habgood M.D., Callaway J.K. et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infi ltration // Exp. Neurol. 2007;204(1):220-233. DOI: 10.1016/j.expneurol.2006.10.013.
31. Wells J.E., Hurlbert R.J., Fehlings M.G., Yong V.W. Neuroprotection by minocycline facilitates signifi cant recovery from spinal cord injury in mice // Brain. 2003;126(Pt 7):1628-1637. DOI: 10.1093/brain/awg178.
32. Milman A., Rosenberg A., Weizman R., Pick C.G. Mild traumatic brain injury induces persistent cognitive defi cits and behavioral disturbances in mice // J. Neurotrauma. 2005;22(9):1003-1010. DOI: 10.1089/neu.2005.22.1003.
33. Sanchez Mejia R.O., Ona V.O., Li M., Friedlander R.M. Minocycline reduces traumatic brain injury-induced caspase-1 activation, tissue damage, and neurological dysfunction // Neurosurgery. 2001;48(6):1393-1399; discussion 1399-401. DOI: 10.1097/00006123-200106000-00051.
34. Loane D.J., Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated // Exp. Neurol. 2016;275(Pt 3):316-327. DOI: 10.1016/j.expneurol.2015.08.018.
35. Celorrio M., Shumilov K., Payne C. et al. Acute minocycline administration reduces brain injury and improves long-term functional outcomes after delayed hypoxemia following traumatic brain injury // Acta Neuropathol. Commun. 2022;10(1):10. DOI: 10.1186/s40478-022-01310-1.
Review
For citations:
Abaribote F.A., Nwagor F.Ch., Onyeke G.O., Oyinbo Ch.A. Tetracycline attenuates hippocampal and cerebellar damage in a weight-drop model of mild traumatic brain injury in adolescent rats: A candidate for drug repurposing? Journal of Siberian Medical Sciences. 2025;(4):105-120. https://doi.org/10.31549/2542-1174-2025-9-4-105-120

























