Preview

Journal of Siberian Medical Sciences

Advanced search

Change in relative telomere length over fifteen years is associated with markers of cardiovascular ageing in middle-aged subjects – the Malmö Diet and Cancer Study, Sweden

https://doi.org/10.31549/2542-1174-2019-1-4-17

Abstract

Objective.  To analyse the association between long-term changes in relative telomere length (RTL) and selected markers of cardiovascular ageing such as history of myocardial infarction (MI), pulse pressure or usage of antihypertensive (AHT) drugs during 15 years of follow-up.

Subjects  and  methods.  332 middle-aged subjects were recruited from a population-based, case-control study of patients with MI. RTL in blood at baseline and after 15 years of follow-up was investigated through quantitative PCR. Z-statistics was used to compare the log-distribution of RTL at baseline and at follow-up, respectively. The difference (Δz-score) was calculated for each individual as a marker of relative change in telomere length over 15 years. Multiple regression analysis was used with Δz-score as dependent variable, and age, sex, RTL at baseline, and clinical markers of cardiovascular ageing as independent variables.

Results.  We found that Δz-score of RTL was independently associated with both total (prevalent/incident) MI (p < 0.039) and usage of AHT drugs (p < 0.015) at baseline. Subjects with MI or on AHT drugs showed a greater reduction in the z-score for RTL during follow-up, implying a higher degree of telomere shortening.

Conclusion.  Changes in blood relative telomere attrition (RTL) is a potential marker of cardiovascular ageing, as illustrated by significant and independent associations between Δ z-score and prevalent/incident MI, as well as with base-line usage of antihypertensive drugs — a marker of longstanding hypertension in need of treatment.

About the Authors

P. M. Nilsson
Lund University, Skåne University Hospital
Sweden

Nilsson Peter M. — MD, PhD, Professor of Clinical Cardiovascular Research. Department of Clinical Sciences, Cardiovascular Genetics and Clinical Cardiovascular Research Group.

Jan Waldenstroms gata, 15, 5th floor, Skåne University Hospital, S-205 02, Malmö.



D. Dahlman
Lund University, Skåne University Hospital
Sweden

Dahlman Disa — MD, PhD, Registrar Phisician. Department of Clinical Sciences, Cardiovascular Genetics and Clinical Cardiovascular Research Group.

Jan Waldenstroms gata, 15, 5th floor, Skåne University Hospital, S-205 02, Malmö.



O. Melander
Lund University, Skåne University Hospital
Sweden

Melander Olle — MD, PhD, Professor of Internal Medicine. Department of Clinical Sciences, Cardiovascular Genetics and Clinical Cardiovascular Research Group.

Jan Waldenstroms gata, 15, 5th floor, Skåne University Hospital, S-205 02, Malmö.



References

1. Wong J.M., Collins K. (2003). Telomere maintenance and disease. Lancet, 362, 983–988.

2. Codd V., Mangino M., van der Harst P. et al. (2010). Common variants near TERC are associated with mean telomere length. Nat. Genet., 42, 197–199.

3. Ornish D., Lin J., Daubenmier J. et al. (2008). Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol., 9, 1048–1057. Erratum in: Lancet Oncol. (2008), 9, 1124.

4. Demissie S., Levy D., Benjamin E.J. et al. (2006). Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell, 5, 325–330.

5. Jeanclos E., Schork N.J., Kyvik K.O. et al. (2000). Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension, 36, 195–200.

6. Sampson M.J., Winterbone M.S., Hughes J.C., Dozio N., Hughes D.A. (2006). Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care, 29, 283–289.

7. Olivieri F., Lorenzi M., Antonicelli R. et al. (2009). Leukocyte telomere shortening in elderly Type 2 DM patients with previous myocardial infarction. Atherosclerosis, 206, 588–593.

8. Gardner J.P., Li S., Srinivasan S.R. et al. (2005). Rise in insulin resistance is associated with escalated telomere attrition. Circulation, 111, 2171–2177.

9. Brouilette S., Singh R.K., Thompson J.R., Goodall A.H., Samani N.J. (2003). White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol., 23, 842–846.

10. Fitzpatrick A.L., Kronmal R.A., Gardner J.P. et al. (2007). Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am. J. Epidemiol., 165, 14–21.

11. Zee R.Y., Michaud S.E., Germer S., Ridker P.M. (2009). Association of shorter mean telomere length with risk of incident myocardial infarction: a prospective, nested case-control approach. Clin. Chim. Acta, 403, 139–141.

12. Zee R.Y., Ridker P.M., Chasman D.I. (2011). Genetic variants in eleven telomere-associated genes and the risk of incident cardio/cerebrovascular disease: The Women’s Genome Health Study. Clin. Chim. Acta, 412, 199–202.

13. Atturu G., Brouilette S., Samani N.J. et al. (2010). Short leukocyte telomere length is associated with abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg., 39, 559–564.

14. Valdes A.M., Andrew T., Gardner J.P. et al. (2005). Obesity, cigarette smoking, and telomere length in women. Lancet, 366, 662–664.

15. De Meyer T., Rietzschel E.R., De Buyzere M.L., Van Crieklinge W., Bekaert S. (2008). Studying telomeres in a longitudinal population based study. Front. Biosci., 13, 2960–2970.

16. Ehrlenbach S., Willeit P., Kiechl S. et al. (2009). Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int. J. Epidemiol., 38, 1725–1734.

17. Aviv A., Chen W., Gardner J.P. et al. (2009). Leukocyte telomere dynamics, longitudinal findings among young adults in the Bogalusa Heart Study. Am. J. Epidemiol., 169, 323–329.

18. Farzaneh-Far R., Lin J., Epel E. et al. (2010). Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One, 5:e8612.

19. Brouilette S.W., Moore S.J., MacMahon A.D. et al. (2007). Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Coronary Protection Study: a nested case-control study. Lancet, 369, 107–114.

20. Hedblad B., Nilsson P., Janzon L., Berglund G. (2000). Relation between insulin resistance and carotid intima-media thickness and stenosis in non-diabetic subjects. Results from a cross-sectional study in Malmö, Sweden. Diabet Med., 17, 299–307.

21. Manjer J., Carlsson S., Elmståhl S. et al. (2001). The Malmö Diet and Cancer Study, representativity, cancer incidence and mortality in participants and non-participants. Eur. J. Cancer. Prev., 10, 489–499.

22. Nordfjäll K., Eliasson M., Stegmayr B. et al. (2008). Telomere length is associated to obesity parameters but with a gender difference. Obesity, 16, 2682–2689.

23. Rosvall M., Janzon L., Berglund G. et al. (2005). Incident coronary events and case fatality in relation to common carotid intima-media thickness. J. Intern. Med., 257, 430–437.

24. The National Board of Health and Welfare. Evaluation of Quality of Diagnosis of Acute Myocardial Infarction, Inpatient Register 1997 and 1995. (2000). Stockholm, Sweden, National Board of Health and Welfare.

25. Nordfjall K., Osterman P., Melander O., Nilsson P., Roos G. (2007). hTERT (-1327)T/C polymorphism is not associated with age-related telomere attrition in peripheral blood. Biochem. Biophys. Res. Commun., 358, 215–218.

26. Cawthon R.M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Res., 30:e47.

27. Printhall R.C. (2003). Basic Statistical Analysis. 17th еd. Pearson Education Group, US.

28. Nordfjäll K., Svenson U., Norrback K.F. et al. (2009). The individual blood cell telomere attrition rate is telomere length dependent. PLoS Genet, 5:e1000375.

29. Samani N.J., van der Harst P. (2008). Biological ageing and cardiovascular disease. Heart, 94, 537–539.

30. Minamino T., Komuro I. (2008). Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nat. Clin. Pract. Cardiovasc. Med., 5, 637–648.

31. Butt H.Z., Atturu G., London N.J., Sayers R.D., Bown M.J. (2010). Telomere length dynamics in vascular disease: a review. Eur. J. Vasc. Endovasc. Surg., 40, 17–26.

32. Nilsson P.M., Lurbe E., Laurent S. (2008). The early life origins of vascular ageing and cardiovascular risk: the EVA syndrome. (Review). J. Hypertens., 26, 1049–1057.

33. Rufer N., Dragowska W., Thornbury G., Roosnek E., Lansdorp P.M. (1998). Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol., 16, 743–747.

34. Bekaert S., De Meyer T., Rietzschel E.R. et al. (2007). Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell, 6, 639–647.

35. Nordfjäll K., Eliasson M., Stegmayr B. et al. (2008). Increased abdominal obesity, adverse psychosocial factors and shorter telomere length in persons reporting subjective early ageing; the MONICA Northern Sweden Study. Scand. J. Publ. Health, 36, 744–752.

36. Aviv A. (2008). The epidemiology of human telomeres: faults and promises. J. Gerontol. A Biol. Sci. Med. Sci., 63, 979–983.

37. Samani N.J., Boultby R., Butler R., Thompson J.R., Goodall A.H. (2001). Telomere shortening in atherosclerosis. Lancet, 358, 472–473.

38. O’Donnell C.J., Demissie S., Kimura M. et al. (2008). Leukocyte telomere length and carotid artery intimal medial thickness: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol., 28, 1165–1171.

39. Aviv A., Valdes A.M., Spector D.M. (2006). Human telomere biology, pitfalls of moving from the laboratory to epidemiology. Int. J. Epidemiol., 35, 1424–1429.

40. Kimura M., Stone R.C., Hunt S.C. et al. (2010). Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat. Protoc., 5, 1596–1607.

41. Cawthon R.M., Smith K.R., O’Brien E., Sivatchenko A., Kerber R.A. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. Lancet, 361, 393–395.

42. De Meyer T., Rietzschel E.R., De Buyzere M.L., Van Criekinge W., Bekaert S. (2010). Telomere length and cardiovascular aging: The means to the ends? Ageing Res. Rev. Nov 23. [Epub ahead of print].

43. Epel E.S., Merkin S.S., Cawthon R. et al. (2008). The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY), 1, 81–88.

44. Nilsson P.M., Tufvesson H., Leosdottir M., Melander O. (2013). Telomeres and cardiovascular disease risk: an update 2013. Transl. Res., 162, 371–380.

45. Masi S., D’Aiuto F., Martin-Ruiz C. et al. (2014). Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur. Heart J., 7, 35, 46, 3296–3303.

46. Rietzschel E.R., Bekaert S., De Meyer T. (2016). Telomeres and atherosclerosis: the attrition of an attractive hypothesis. J. Am. Coll. Cardiol., 67, 21, 2477–2479.

47. Weischer M., Bojesen S.E., Nordestgaard B.G. (2014). Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet., 10, 3:e1004191.

48. Dalgård C., Benetos A., Verhulst S et al. (2015). Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int. J. Epidemiol., 44, 5, 1688–1695.

49. Baragetti A., Palmen J., Garlaschelli K. et al. (2015). Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J. Intern. Med., 277, 4, 478–487.

50. Ellehoj H., Bendix L., Osler M. (2016). Leucocyte telomere length and risk of cardiovascular disease in a cohort of 1,397 danish men and women. Cardiology, 133, 3, 173–177.


Review

For citations:


Nilsson P.M., Dahlman D., Melander O. Change in relative telomere length over fifteen years is associated with markers of cardiovascular ageing in middle-aged subjects – the Malmö Diet and Cancer Study, Sweden. Journal of Siberian Medical Sciences. 2019;(1):4-17. https://doi.org/10.31549/2542-1174-2019-1-4-17

Views: 192


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)