Лимфопения как фактор, определяющий тяжесть сепсиса, как точный критерий диагностики и как объект терапии
https://doi.org/10.31549/2542-1174-2020-3-108-125
Аннотация
Попытки оптимизации диагностики сепсиса и его осложнений привели к созданию концепции Сепсис-3, вступающей в противоречие с основными положениями терапии этого угрожающего состояния, а именно — максимально ранним началом лечения. В свою очередь, внедрение новых методов мониторинга и протезирования функций органов при полиорганной недостаточности не вызвало заметного улучшения результатов терапии сепсиса. Широкое распространение резистентных к антибиотикотерапии штаммов также требует поиска новых подходов в диагностике и терапии сепсиса.
Настоящий обзор призван акцентировать внимание на таком типичном для сепсиса явлении, как абсолютная лимфопения. многочисленные исследования показывают, что именно лимфопения определяет тяжесть течения сепсиса. Композитные индексы (соотношение нейтрофилы/лимфоциты (neutrophil-lymphocyte count ratio, NLCR) или лимфоцитарный индекс (соотношение лимфоциты/гранулоциты периферической крови)) являются наиболее надежными критериями в диагностике сепсиса. Кроме того, представленные данные свидетельствуют о том, что коррекция лимфопении достоверно улучшает прогноз при сепсисе. Очевидно, что признание ключевой роли абсолютной лимфопении в патогенезе, диагностике и терапии сепсиса послужит толчком к дальнейшему развитию концепции сепсиса.
Об авторах
Е. И. СтрельцоваРоссия
Стрельцова Елена Ивановна — канд. мед. наук, доцент кафедры анестезиологии и реаниматологии; заведующий отделением реанимации и интенсивной терапии, заместитель главного врача по лечебной части
Новосибирск
И. В. Пешкова
Россия
Пешкова Инесса Викторовна — д-р мед. наук, доцент кафедры анестезиологии и реаниматологии
Новосибирск
И. Ю. Саматов
Россия
Саматов Игорь Юрьевич — ассистент кафедры анестезиологии и реаниматологии; заведующий отделением реанимации и интенсивной терапии ожогового центра, заместитель главного врача по анестезиологии, реаниматологии и интенсивной терапии
Новосибирск
В. А. Валеева
Россия
Валеева Влада Арнольдовна — канд. мед. наук, доцент кафедры анестезиологии и реаниматологии
Новосибирск
Е. И. Верещагин
Россия
Верещагин Евгений Иванович — д-р мед. наук, профессор, заведующий кафедрой анестезиологии и реаниматологии
630091, г. Новосибирск, Красный просп., 52
Список литературы
1. Drewry A.M., Samra N., Skrupky L.P. et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality // Shock. 2014. Vol. 42 (5). P. 383–391. doi: 10.1097/SHK.0000000000000234.
2. Opal S.M. The current understanding of sepsis and research priorities for the future // Virulence. 2014. Vol. 5 (1). P. 1–3. doi: 10.4161/viru.26803.
3. Ulloa L., Brunner M., Ramos L., Deitch EA. Scientific and clinical challenges in sepsis // Curr. Pharm. Des. 2009. Vol. 15 (16). P. 1918–1935.
4. Kumar A., Ellis P., Arabi Y. et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock // Chest. 2009. Vol. 136 (5). P. 1237–1248.
5. Dellinger R.P., Levy M.M., Rhodes A. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012 // Crit. Care Med. 2013. Vol. 41 (2). P. 580–637.
6. Hotchkiss R.S., Karl I.E. The pathophysiology and treatment of sepsis // N. Engl. J. Med. 2003. Vol. 348 (2). P. 138–150.
7. Сепсис: классификация, клинико-диагностическая концепция и лечение / под ред. акад. РАН Б.Р. Гельфанда. 4-е изд., перераб. и доп. м.: мед. информ. агентство, 2017. 408 с.
8. Хаертынов Х.С., Анохин В.А., Бойчук С.В., Ризванов А.А. Сепсис и апоптоз // Гены и клетки. 2016. Т. 11, № 4. С. 18–21.
9. Белобородов В.Б. Иммунопатология тяжелого сепсиса и возможности ее коррекции // Вестн. интенсивной терапии. 2010. № 4. С. 3–8.
10. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: novel understanding of the disorder and a new therapeutic approach // Lancet Infect. Dis. 2013. Vol. 13. P. 260–268.
11. Munford R.S., Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive // Am. J. Respir. Crit. Care Med. 2001. Vol. 163 (2). P. 316–321.
12. Angus D.C., van der Poll T. Severe sepsis and septic shock // N. Eng. J. Med. 2013. Vol. 369 (9). P. 840–851.
13. Ward P.A. Immunosuppression in sepsis // JAMA. 2011. Vol. 306 (23). P. 2618–2619.
14. Dilek N., de Silly R.V., Blancho G., Vanhove B. Myeloidderived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance // Front. Immunol. 2012. 3: 208. doi: 10.3389/fimmu.2012.00208.
15. Grigoryev E.V., Shukevich D.L., Matveeva V.G., Kornekyuk R.A. Immunosuppression as a component of multiple organ dysfunction syndrome followed cardiac surgery // Compl. Iss. Cardiovasc. Dis. 2018. Vol. 7 (4). P. 84–91. doi: 10.17802/2306-1278-2018-7-4-84-91.
16. Torgersen C., Moser P., Luckner G. et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis // Anesth. Analg. 2009. Vol. 108 (6). P. 1841–1847.
17. Zijlstra J., van Meurs M., Moser J. Commentary: precision immunotherapy for sepsis // Front Immunol. 2019. Vol. 10: 20. doi: 10.3389/fimmu.2019.00020.
18. Venet F., Davin F., Guignant C. et al. Early assessment of leukocyte alterations at diagnosis of septic shock // Shock. 2010. Vol. 34 (4). P. 358–363.
19. Monserrat J., de Pablo R., Reyes E. et al. Clinical relevance of the severe abnormalities of the T cell compartment in septic shock patients // Crit. Care. 2009. Vol. 13 (1). Art. numb.: R26.
20. Monserrat J., de Pablo R., Diaz-Martin D. et al. Early alterations of B cells in patients with septic shock // Crit. Care. 2013. Vol. 17 (3). Art. numb.: R105.
21. Hein F., Massin F., Cravoisy-Popovic A. et al. The relationship between CD4+CD25+CD127-regulatory T cells and inflammatory response and outcome during shock states // Crit. Care. 2010. Vol. 14 (1). Art. numb.: R19.
22. Inoue S., Suzuki-Utsunomiya K., Okada Y. et al. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly // Crit. Care. Med. 2013. Vol. 41 (3). P. 810–819.
23. Felmet K.A., Hall M.W., Clark R.S., Jaffe R., Carcillo J.A. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure // J. Immunol. 2005. Vol. 174 (6). P. 3765–3772.
24. Cheadle W.G., Pemberton R.M., Robinson D. et al. Lymphocyte subset responses to trauma and sepsis // J. Trauma. 1993. Vol. 35 (6). P. 844–849.
25. Hotchkiss R.S., Swanson P.E., Freeman B.D. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction // Crit. Care Med. 2009. Vol. 27 (7). P. 1230–1251.
26. Elmore S. Apoptosis: a review of programmed cell death // Toxicol. Pathol. 2007. Vol. 35 (4). P. 495–516.
27. Hotchkiss R.S., Coopersmith C.M., Karl I.E. Prevention of lymphocyte apoptosis — a potential treatment of sepsis? // Clin. Infect. Dis. 2005. Vol. 41. P. 465–469.
28. da Silva F.P., Nizet V. Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection // Apoptosis. 2009. Vol. 14. P. 509–521.
29. Venet F., Rimmelé T., Monneret G. Management of sepsis-induced immunosuppression// Crit. Care Clin. 2018. Vol. 34 (1). P. 97–106. doi: 10.1016/j.ccc.2017.08.007.
30. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans // J. Immunol. 2001. Vol. 166. P. 6952–6963.
31. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis // J. Immunol. 2002. Vol. 168. P. 2493–2500.
32. Хаертынов Х.С., Бойчук С.В., Анохин В.А. и др. Показатели активности апоптоза лимфоцитов крови у детей с неонатальным сепсисом // Гены и клетки. 2014. T. 9, № 3-2. С. 267–271.
33. Pastille E., Didovic S., Brauckmann D. et al. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis // J. Immunol. 2001. Vol. 186. P. 977–986.
34. Drifte G., Dunn-Siegrist I., Tissieres P. et al. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome // Crit. Care Med. 2013. Vol. 41. P. 820–832.
35. Huang L.F., Yao Y.M., Dong N. et al. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study // Crit. Care. 2010. Vol. 14. Art. numb.: R3.
36. Venet F., Pachot A., Debard A.L. et al. Human CD4+ CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism // J. Immunol. 2006. Vol. 177. P. 6540–6547.
37. Hotchkiss R.S., Schmieg R.E., Swanson P.E. et al. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock // Crit. Care Med. 2000. Vol. 28. P. 3207–3217.
38. Bochud P.Y., Calandra Th. Pathogenesis of sepsis: new concepts and implication for future treatment // BMJ. 2003. Vol. 326 (738). P. 262–265.
39. Bone R.C. Sir Isaac Newton, sepsis, SIRS, and CARS // Crit. Care Med. 1996. Vol. 24 (7). P. 1125–1128.
40. Poujol F., Monneret G., Gallet-Gorius E. et al. Ex vivo stimulation of lymphocytes with IL-10 mimics sepsis-induced intrinsic T-cell alterations // Immunol. Invest. 2018. Vol. 47 (2). P. 154–168. doi: 10.1080/08820139.2017.1407786.
41. Corzo C.A., Cotter M.J., Cheng P. Mechanism regulating reactive oxygen species in tumor-induced myeloidderived suppressor cells // J. Immunol. 2009. Vol. 182 (9). P. 5693–5701. doi: 10.4049/jimmunol.0900092.
42. Ray A., Chakraborty K., Ray P. Immunosuppressive MDSCs induced by TLR signalling during infection and role in resolution of inflammation // Front. Cell. Infect. Microbiol. 2013. Vol. 3: 52. doi: 10.3389/fcimb.2013.00052.
43. Mathias B., Delmas A.L., Ozrazgat-Baslanti T. et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/ septic shock // Ann. Surg. 2017. Vol. 265 (4). P. 827– 834. doi: 10.1097/SLA.0000000000001783.
44. Nacionales D.C., Szpila B., Ungaro R. et al. A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged // J. Immunol. 2015. Vol. 195. P. 2396–2407. doi: 10.4049/jimmunol.1500984.
45. Mare T.A., Treacher D.F., Shankar-Hari M. et al. The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation // Crit. Care. 2015. Vol. 19 (1). Art. numb.: 57. doi: 10.1186/s13054-015-0778-z.
46. Григорьев Е.В., Плотников Г.П., Шукевич Д.Л., Головкин А.С. Персистирующая полиорганная недостаточность // Патология кровообращения и кардиохирургия. 2014. Т. 18, № 3. С. 82–86.
47. Venet F., Chung C.S., Monneret G. et al. Regulatory T cell populations in sepsis and trauma // J. Leukoc Biol. 2008. Vol. 83. P. 523–535.
48. Leng F.Y., Liu J.L., Liu Z.J., Yin J.Y., Qu H.P. Increased proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells during early-stage sepsis in ICU patients // J. Microbiol. Immunol. Infect. 2013. Vol. 46. P. 338–344.
49. Monneret G., Debard A.L., Venet F. et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis // Crit. Care Med. 2003. Vol. 31 (7). P. 2068–2071.
50. Wisnoski N., Chung C.S., Chen Y., Huang X., Ayala A. The contribution of CD4+ CD25+ T-regulatory-cells to immune suppression in sepsis // Shock. 2007. Vol. 27. P. 251–257.
51. Ono S., Kimura A., Hiraki S. et al. Removal of increased circulating CD4+CD25+Foxp3+ regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers // Surgery. 2013. Vol. 153. P. 262–271.
52. Ljungström L., Pernestig A.-K., Jacobsson G. et al. Diagnostic accuracy of procalcitonin, neutrophillymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis // PLoS One. 2017. Vol. 12 (7): e0181704. doi: 10.1371/journal.pone.0181704
53. Zahorec R. Ratio of neutrophil to lymphocyte counts — rapid and simple parameter of systemic inflammation and stress in critically ill // Bratisl. Lek. Listy. 2001. Vol. 102 (1). P. 5–14.
54. Shapiro N.I., Trzeciak S., Hollander J.E. et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis // Crit. Care Med. 2009. Vol. 37 (1). P. 96–104. doi: 10.1097/CCM.0b013e318192fd9d .
55. de Jager C.P., van Wijk P.T., Mathoera R.B. et al. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit // Crit. Care. 2010. Vol. 14 (5). Art. numb.: R192.
56. Terradas R., Grau S., Blanch J. et al. Eosinophil count and neutrophil-lymphocyte count ratio as prognostic markers in patients with bacteremia: a retrospective cohort study // PLoS One. 2012. Vol. 7 (8): e42860. doi: 10.1371/journal.pone.0042860.
57. Ljungström L., Karlsson D., Pernestig A., Andersson R., Jacobsson G. Neutrophil to lymphocyte count ratio performs better than procalcitonin as a biomarker for bacteremia and severe sepsis in the emergency department // Crit. Care. 2015. Vol. 19 (1). Art. numb.: P66 doi: 10.1186/cc14146.
58. Ozdemir S.A., Ozer E.A., Ilhan O., Sutcuoglu S. Can neutrophil to lymphocyte ratio predict late-onset sepsis in preterm infants? // J. Clin. Lab. Anal. 2018. Vol. 32 (4): e22338.
59. Riché F., Gayat E., Barthelemy R. et al. Reversal of neutrophil-to-lymphocyte count ratio in early versus late death from septic shock // Crit. Care. 2015. Vol. 19. Art. numb.: 439. doi: 10.1186/s13054-015-1144-x.
60. Валеева В.А., Стрельцова Е.И., Верещагин Е.И. Диагностическая ценность маркеров сепсиса на этапах интенсивной терапии // J. Sib. Med. Sci. 2018. № 4. C. 34–41.
61. Felmet K.A., Hall M.W., Clark R.S., Jaffe R., Carcillo J.A. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure // J. Immunol. 2005. Vol. 174 (6). P. 3765–3772.
62. Holub M., Klucková Z., Helcl M. et al. Lymphocyte subset numbers depend on the bacterial origin of sepsis // Clin. Microbiol. Infect. 2003. Vol. 9 (3). P. 202–211. doi: 10.1046/j.1469-0691.2003.00518.x.
63. Heffernan D.S., Monaghan S.F., Thakkar R.K. et al. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern // Crit. Care. 2012. Vol. 16 (1). Art. numb.: R12.
64. Lewis R.T., Klein H. Risk factors in postoperative sepsis: significance of preoperative lymphocytopenia // J. Surgical Res. 1979. Vol. 26 (4). P. 365–371.
65. Oberholzer C., Oberholzer A., Bahjat F.R. et al. Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis // Proc. Nat. Acad. Sci. USA. 2001. Vol. 98 (20). P. 11503–11508.
66. Venet F., Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression // Nat. Rev. Nephrol. 2018. Vol. 14 (2). P. 121–137.
67. Pei F., Guan X., Wu J. Thymosin alpha 1 treatment for patients with sepsis // Expert Opin. Biol. Ther. 2018. Vol. 18 (1). P. 71–76. doi: 10.1080/14712598.2018.1484104.
68. Marshall J.C., Christou N.V., Meakins J.L. The gastrointestinal tract. The “undrained abscess” of multiple organ failure // Ann. Surg. 1993. Vol. 218 (2). P. 111–119.
69. Vaishnavi C. Translocation of gut flora and its role in sepsis // Ind. J. Med. Microbiol. 2013. Vol. 31 (4). P. 334–342.
70. Fukushima R., Alexander J.W., Gianotti L. et al. Bacterial translocation-related mortality may be associated with neutrophil-mediated organ damage // Shock. 1995. Vol. 3 (5). P. 323–328.
71. Fraker P.J., Lill-Elghanian D.A. The many roles of apoptosis in immunity as modified by aging and nutritional status // J. Nutr. Health Aging. 2004. Vol. 8. P. 56–63.
72. Fock R.A., Blatt S.L., Beutler B. et al. Study of lymphocyte subpopulations in bone marrow in a model of protein-energy malnutrition // Nutrition. 2010. Vol. 26. P. 1021–1028. doi: 10.1016/j.nut.2009.08.026.
73. Liu Y., Zhao W., Chen W. et al. Effects of early enteral nutrition on immune function and prognosis of patients with sepsis on mechanical ventilation // J. Intens. Care Med. 2018 Nov 1: 885066618809893. doi: 10.1177/0885066618809893.
74. Wischmeyer P.E. Nutrition therapy in sepsis // Crit. Care Clin. 2018. Vol. 34 (1). P. 107–125. doi: 10.1016/j.ccc.2017.08.008.
75. Fuchs B.C., Bode B.P. Stressing out over survival: glutamine as an apoptotic modulator // J. Surg. Res. 2006. Vol. 131 (1). P. 26–40.
76. Guérin P.J., Furtak T., Eng K., Gauthier E.R. Oxidative stress is not required for the induction of apoptosis upon glutamine starvation of Sp2/0-Ag14 hybridoma cells // Eur. J. Cell Biol. 2006. Vol. 85 (5). P. 355–365.
77. Carneiro B.A., Fujii J., Brito G.A. et al. Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro // Infect. Immun. 2006. Vol. 74 (1). P. 81–87.
78. Boomer J.S., To K., Chang K.C. Immunosuppression in patients who die of sepsis and multiple organ failure // JAMA. 2011. Vol. 306 (23). P. 2594–2605.
79. He X., Bo L., Jiang C. Advances in sepsis induced immunosuppression and immunomodulation therapy // Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018. Vol. 30 (12). P. 1202–1205.
80. Angus D.C. The search for effective therapy for sepsis: back to the drawing board? // JAMA. 2011. Vol. 306 (23). P. 2614–2615.
81. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96 (25). P. 14541–14546.
82. Coopersmith C.M., Stromberg P.E., Dunne W.M. et al. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis // JAMA. 2002. Vol. 287. P. 1716–1721.
83. Chang K., Svabek C., Vazquez-Guillamet C. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis // Crit. Care. 2014. Vol. 18 (1). Art. numb.: R3.
84. Ward P.A. New approaches to the study of sepsis // EMBO Mol. Med. 2012. Vol. 4 (2). P. 1234–1243.
85. Venet F., Foray A.P., Villars-Méchin A. et al. IL-7 restores lymphocyte functions in septic patients // J. Immunol. 2012. Vol. 189. P. 5073–5081.
86. Inoue S., Unsinger J., Davis C.G. et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis // J. Immunol. 2010. Vol. 184 (3). P. 1401–1409.
87. Hutchins N.A., Unsinger J., Hotchkiss R.S., Ayala A. The new normal: immunomodulatory agents against sepsis immune suppression // Trends Mol. Med. 2014. Vol. 20 (4). P. 224–233.
88. Unsinger J., McGlynn M., Kasten K.R. et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis // J. Immunol. 2010. Vol. 184 (7). P. 3768–3779
89. Hiraki S., Ono S., Tsujimoto H. et al. Neutralization of interleukin-10 or transforming growth factor-β decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival // Surgery. 2012. Vol. 151 (2). P. 313–322.
Рецензия
Для цитирования:
Стрельцова Е.И., Пешкова И.В., Саматов И.Ю., Валеева В.А., Верещагин Е.И. Лимфопения как фактор, определяющий тяжесть сепсиса, как точный критерий диагностики и как объект терапии. Journal of Siberian Medical Sciences. 2020;(3):108-125. https://doi.org/10.31549/2542-1174-2020-3-108-125
For citation:
Streltsova Е.I., Peshkova I.V., Samatov I.Yu., Valeeva V.А., Vereshchagin Е.I. Lymphopenia as a determinant factor of sepsis severity, as an exact diagnostic criterion, and as an object of therapy. Journal of Siberian Medical Sciences. 2020;(3):108-125. https://doi.org/10.31549/2542-1174-2020-3-108-125