Lymphopenia as a determinant factor of sepsis severity, as an exact diagnostic criterion, and as an object of therapy
https://doi.org/10.31549/2542-1174-2020-3-108-125
Abstract
Attempts to optimize the diagnosis of sepsis and its complications have led to the development of Sepsis-3 concept which contradicts the basic provisions of therapy for this threatening condition, namely, the earliest possible onset of the treatment. In turn, the introduction of new methods for monitoring and substitution of organ functions in multiple organ failure did not cause a noticeable improvement in the results of sepsis therapy. The high incidence of antibiotic-resistant strains also requires the search of the new approaches in the diagnosis and therapy of sepsis.
The present review is intended to focus on such a typical sepsis phenomenon as absolute lymphopenia. Numerous studies show that it is lymphopenia that determines the severity of sepsis. Composite biomarkers (the neutrophil-lymphocyte count ratio, NLCR) or lymphocyte index (the lymphocyte/peripheral blood granulocytes ratio)) are the most reliable criteria in sepsis diagnosis. In addition, the presented data suggest that lymphopenia correction significantly improves prognosis in sepsis. It seems clear that the acknowledgment of the absolute lymphopenia’s key role in pathogenesis, diagnosis and therapy of sepsis will serve as an impulse for further development of sepsis concept.
About the Authors
Е. I. StreltsovaRussian Federation
Streltsova Elena ivanovna — Cand. Sci. (Med.), Assistant Professor, Department of Anesthesiology and Resuscitation; Head, Intensive Care Unit, Deputy Head Physician on Medical Work
I. V. Peshkova
Russian Federation
Peshkova Inessa Viktorovna — Dr. Sci. (Med.), Assistant Professor, Department of Anesthesiology and Resuscitation
I. Yu. Samatov
Russian Federation
Samatov Igor Yuryevich — Assistant, Department of Anesthesiology and Resuscitation; Head, Department of Intensive Care, Burn Centre, Deputy Head Physician on Anesthesiology, Resuscitation and Intensive Care
V. А. Valeeva
Russian Federation
Valeeva Vlada Arnoldovna — Cand. Sci. (Med.), Assistant Professor, Department of Anesthesiology and Resuscitation
Е. I. Vereshchagin
Russian Federation
Vereshchagin Evgeny Ivanovich — Dr. Sci. (Med.), Professor, Department of Anesthesiology and Resuscitation
52, Krasny Prospect, Novosibirsk, 630091
References
1. Drewry A.M., Samram N., Skrupky L.P. et al. (2014). Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock, 42 (5), 383–391. doi: 10.1097/SHK.0000000000000234.
2. Opal S.M. (2014). The current understanding of sepsis and research priorities for the future. Virulence, 5 (1), 1–3. doi: 10.4161/viru.26803.
3. Ulloa L., Brunner M., Ramos L., Deitch EA. (2009). Scientific and clinical challenges in sepsis. Curr. Pharm. Des., 15 (16), 1918–1935.
4. Kumar A., Ellis P., Arabi Y. et al. (2009). Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest, 136 (5), 1237–1248.
5. Dellinger R.P., Levy M.M., Rhodes A. et al. (2013). Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med., 41 (2), 580–637.
6. Hotchkiss R.S., Karl I.E. (2003). The pathophysiology and treatment of sepsis. N. Engl. J. Med., 348 (2), 138–150.
7. Sepsis: Classification, Clinical-diagnostic Concept and Treatment. 4th ed. (2017). Moscow, 408 p. In Russ.
8. Khaertynov Kh.S., Anokhin V.A., Boichuk S.V., Rizvanov A.A. (2016). Sepsis and apoptosis. Genes and Cells, 11 (4), 18–21.
9. Beloborodov V.B. (2010). Immunopathology of severe sepsis and the possibility of its correction. Annals of Critical Care, 4, 3–8. In Russ.
10. Hotchkiss R.S., Monneret G., Payen D. (2013). Immunosuppression in sepsis: novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis., 13, 260–268.
11. Munford R.S., Pugin J. (2001). Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am. J. Respir. Crit. Care Med., 163 (2), 316–321.
12. Angus D.C., van der Poll T. (2013). Severe sepsis and septic shock. N. Eng. J. Med., 369 (9), 840–851.
13. Ward P.A. (2011). Immunosuppression in sepsis. JAMA, 306 (23), 2618–2619.
14. Dilek N., de Silly R.V., Blancho G., Vanhove B. (2012). Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front. Immunol., 3: 208. doi: 10.3389/fimmu.2012.00208.
15. Grigoryev E.V., Shukevich D.L., Matveeva V.G., Kornekyuk R.A. (2018). Immunosuppression as a component of multiple organ dysfunction syndrome followed cardiac surgery. Compl. Iss. Cardiovasc. Dis., 7 (4), 84–91. doi: 10.17802/2306-1278-2018-7-4-84-91.
16. Torgersen C., Moser P., Luckner G. et al. (2009). Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth. Analg., 108 (6), 1841–1847.
17. Zijlstra J., van Meurs M., Moser J. (2019). Commentary: precision immunotherapy for sepsis. Front Immunol., 10: 20. doi: 10.3389/fimmu.2019.00020.
18. Venet F., Davin F., Guignant C. et al. (2010). Early assessment of leukocyte alterations at diagnosis of septic shock. Shock, 34 (4), 358–363.
19. Monserrat J., de Pablo R., Reyes E. et al. (2009). Clinical relevance of the severe abnormalities of the T cell compartment in septic shock patients. Crit. Care, 13 (1): R26.
20. Monserrat J., de Pablo R., Diaz-Martin D. et al. (2013). Early alterations of B cells in patients with septic shock. Crit. Care, 17 (3): R105.
21. Hein F., Massin F., Cravoisy-Popovic A. et al. (2010). The relationship between CD4+CD25+CD127-regulatory T cells and inflammatory response and outcome during shock states. Crit. Care, 14 (1): R19.
22. Inoue S., Suzuki-Utsunomiya K., Okada Y. et al. (2013). Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit. Care. Med., 41 (3), 810–819.
23. Felmet K.A., Hall M.W., Clark R.S., Jaffe R., Carcillo J.A. (2005). Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol., 174 (6), 3765–3772.
24. Cheadle W.G., Pemberton R.M., Robinson D. et al. (1993). Lymphocyte subset responses to trauma and sepsis. J. Trauma, 35 (6), 844–849.
25. Hotchkiss R.S., Swanson P.E., Freeman B.D. et al. (2009). Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med., 27 (7), 1230–1251.
26. Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol., 35 (4), 495–516.
27. Hotchkiss R.S., Coopersmith C.M., Karl I.E. (2005). Prevention of lymphocyte apoptosis — a potential treatment of sepsis? Clin. Infect. Dis., 41, 465–469.
28. da Silva F.P., Nizet V. (2009). Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection. Apoptosis, 14, 509–521.
29. Venet F., RimmeléT., Monneret G. (2018). Management of sepsis-induced immunosuppression. Crit. Care Clin., 34 (1), 97–106. doi: 10.1016/j.ccc.2017.08.007.
30. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. (2001). Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol., 166, 6952–6963.
31. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. (2002). Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol., 168, 2493–2500.
32. Khaertynov Kh.S., Boichuk S.V., Anokhin V.A. et al. (2014). Activity index of lymphocyte apoptosis in children with neonatal sepsis. Genes and Cells, 9 (3- 2), 267–271.
33. Pastille E., Didovic S., Brauckmann D. et al. (2001). Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J. Immunol., 186, 977–986.
34. Drifte G., Dunn-Siegrist I., Tissieres P. et al. (2013). Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med., 41, 820–832.
35. Huang L.F., Yao Y.M., Dong N. et al. (2010). Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Crit. Care, 14: R3.
36. Venet F., Pachot A., Debard A.L. et al. (2006). Human CD4+ CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J. Immunol., 177, 6540–6547.
37. Hotchkiss R.S., Schmieg R.E., Swanson P.E. et al. (2000). Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit. Care Med., 28, 3207–3217.
38. Bochud P.Y., Calandra Th. (2003). Pathogenesis of sepsis: new concepts and implication for future treatment. BMJ, 326 (738), 262–265.
39. Bone R.C. (1996). Sir Isaac Newton, sepsis, SIRS, and CARS. Crit. Care Med., 24 (7), 1125–1128.
40. Poujol F., Monneret G., Gallet-Gorius E. et al. (2018). Ex vivo stimulation of lymphocytes with IL-10 mimics sepsis-induced intrinsic T-cell alterations. Immunol. Invest., 47 (2), 154–168. doi: 10.1080/08820139.2017.1407786.
41. Corzo C.A., Cotter M.J., Cheng P. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol., 182 (9), 5693–5701. doi: 10.4049/jimmunol.0900092.
42. Ray A., Chakraborty K., Ray P. (2013). Immunosuppressive MDSCs induced by TLR signalling during infection and role in resolution of inflammation. Front. Cell. Infect. Microbiol., 3: 52. doi: 10.3389/fcimb.2013.00052.
43. Mathias B., Delmas A.L., Ozrazgat-Baslanti T. et al. (2017). Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg., 265 (4), 827–834. doi: 10.1097/SLA.0000000000001783.
44. Nacionales D.C., Szpila B., Ungaro R. et al. (2015). A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged. J. Immunol., 195, 2396– 2407. doi: 10.4049/jimmunol.1500984.
45. Mare T.A., Treacher D.F., Shankar-Hari M. et al. (2015). The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation. Crit. Care, 19 (1): 57. doi: 10.1186/s13054-015-0778-z.
46. Grigoryev E.V., Plotnikov G.P., Shukevich D.L., Golovkin A.S. (2014). Persistent multiorgan failure. Circulatory Pathology and Cardiac Surgery, 18 (3), 82–86.
47. Venet F., Chung C.S., Monneret G. et al. (2008). Regulatory T cell populations in sepsis and trauma. J. Leukoc Biol., 83, 523–535.
48. Leng F.Y., Liu J.L., Liu Z.J., Yin J.Y., Qu H.P. (2013). Increased proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells during early-stage sepsis in ICU patients. J. Microbiol. Immunol. Infect., 46, 338– 344.
49. Monneret G., Debard A.L., Venet F. et al. (2003). Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit. Care Med., 31 (7), 2068–2071.
50. Wisnoski N., Chung C.S., Chen Y., Huang X., Ayala A. (2007). The contribution of CD4+ CD25+ T-regulatory-cells to immune suppression in sepsis. Shock, 27, 251–257.
51. Ono S., Kimura A., Hiraki S. et al. (2013). Removal of increased circulating CD4+CD25+Foxp3+ regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery, 153, 262–271.
52. Ljungström L., Pernestig A.-K., Jacobsson G. et al. (2017). Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One, 12 (7): e0181704. doi: 10.1371/journal.pone.0181704.
53. Zahorec R. (2001). Ratio of neutrophil to lymphocyte counts — rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy, 102 (1), 5–14.
54. Shapiro N.I., Trzeciak S., Hollander J.E. et al. (2009). A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit. Care Med., 37 (1), 96–104. doi: 10.1097/CCM.0b013e318192fd9d .
55. de Jager C.P., van Wijk P.T., Mathoera R.B. et al. (2010). Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit. Care, 14 (5): R192.
56. Terradas R., Grau S., Blanch J. et al. (2012). Eosinophil count and neutrophil-lymphocyte count ratio as prognostic markers in patients with bacteremia: a retrospective cohort study. PLoS One, 7 (8): e42860. doi: 10.1371/journal.pone.0042860.
57. Ljungström L., Karlsson D., Pernestig A., Andersson R., Jacobsson G. (2015). Neutrophil to lymphocyte count ratio performs better than procalcitonin as a biomarker for bacteremia and severe sepsis in the emergency department. Crit. Care, 19 (1): P66 doi: 10.1186/cc14146.
58. Ozdemir S.A., Ozer E.A., Ilhan O., Sutcuoglu S. (2018). Can neutrophil to lymphocyte ratio predict lateonset sepsis in preterm infants? J. Clin. Lab. Anal., 32 (4): e22338.
59. Riché F., Gayat E., Barthelemy R. et al. (2015). Reversal of neutrophil-to-lymphocyte count ratio in early versus late death from septic shock. Crit. Care, 19: 439. doi: 10.1186/s13054-015-1144-x.
60. Valeeva V.A., Streltsova E.I., Vereshchagin E.I. (2018). Diagnostic value of sepsis markers at the stages of intensive care. J. Sib. Med. Sci., 4, 34–41.
61. Felmet K.A., Hall M.W., Clark R.S., Jaffe R., Carcillo J.A. (2005). Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol., 174 (6), 3765–3772.
62. Holub M., Klucková Z., Helcl M. et al. (2003). Lymphocyte subset numbers depend on the bacterial origin of sepsis. Clin. Microbiol. Infect., 9 (3), 202– 211. doi: 10.1046/j.1469-0691.2003.00518.x.
63. Heffernan D.S., Monaghan S.F., Thakkar R.K. et al. (2012). Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit. Care, 16 (1): R12.
64. Lewis R.T., Klein H. (1979). Risk factors in postoperative sepsis: significance of preoperative lymphocytopenia. J. Surgical Res., 26 (4), 365–371.
65. Oberholzer C., Oberholzer A., Bahjat F.R. et al. (2001). Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis. Proc. Nat. Acad. Sci. USA, 98 (20), 11503–11508.
66. Venet F., Monneret G. (2018). Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol., 14 (2), 121–137.
67. Pei F., Guan X., Wu J. (2018). Thymosin alpha 1 treatment for patients with sepsis. Expert Opin. Biol. Ther., 18 (1), 71–76. doi: 10.1080/14712598.2018.1484104.
68. Marshall J.C., Christou N.V., Meakins J.L. (1993). The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann. Surg., 218 (2), 111–119.
69. Vaishnavi C. (2013). Translocation of gut flora and its role in sepsis. Ind. J. Med. Microbiol., 31 (4), 334– 342.
70. Fukushima R., Alexander J.W., Gianotti L. et al. (1995). Bacterial translocation-related mortality may be associated with neutrophil-mediated organ damage. Shock, 3 (5), 323–328.
71. Fraker P.J., Lill-Elghanian D.A. (2004). The many roles of apoptosis in immunity as modified by aging and nutritional status. J. Nutr. Health Aging, 8, 56– 63.
72. Fock R.A., Blatt S.L., Beutler B. et al. (2010). Study of lymphocyte subpopulations in bone marrow in a model of protein-energy malnutrition. Nutrition, 26, 1021–1028. doi: 10.1016/j.nut.2009.08.026.
73. Liu Y., Zhao W., Chen W. et al. (2018, Nov 1). Effects of early enteral nutrition on immune function and prognosis of patients with sepsis on mechanical ventilation. J. Intens. Care Med.: 885066618809893. doi: 10.1177/0885066618809893.
74. Wischmeyer P.E. (2018). Nutrition therapy in sepsis. Crit. Care Clin., 34 (1). 107–125. doi: 10.1016/j.ccc.2017.08.008.
75. Fuchs B.C., Bode B.P. (2006). Stressing out over survival: glutamine as an apoptotic modulator. J. Surg. Res., 131 (1), 26–40.
76. Guérin P.J., Furtak T., Eng K., Gauthier E.R. (2006). Oxidative stress is not required for the induction of apoptosis upon glutamine starvation of Sp2/0-Ag14 hybridoma cells. Eur. J. Cell Biol., 85 (5), 355–365.
77. Carneiro B.A., Fujii J., Brito G.A. et al. (2006). Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro. Infect. Immun., 74 (1), 81–87.
78. Boomer J.S., To K., Chang K.C. (2011). Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA, 306 (23), 2594–2605.
79. He X., Bo L., Jiang C. (2018). Advances in sepsis induced immunosuppression and immunomodulation therapy. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 30 (12), 1202–1205.
80. Angus D.C. (2011). The search for effective therapy for sepsis: back to the drawing board? JAMA, 306 (23), 2614–2615.
81. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. (1999). Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl. Acad. Sci. USA, 96 (25), 14541–14546.
82. Coopersmith C.M., Stromberg P.E., Dunne W.M. et al. (2002). Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA, 287, 1716–1721.
83. Chang K., Svabek C., Vazquez-Guillamet C. (2014). Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care, 18 (1): R3.
84. Ward P.A. (2012). New approaches to the study of sepsis. EMBO Mol. Med., 4 (2), 1234–1243.
85. Venet F., Foray A.P., Villars-Méchin A. et al. (2012). IL-7 restores lymphocyte functions in septic patients. J. Immunol., 189, 5073–5081.
86. Inoue S., Unsinger J., Davis C.G. et al. (2010). IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J. Immunol., 184 (3), 1401–1409.
87. Hutchins N.A., Unsinger J., Hotchkiss R.S., Ayala A. (2014). The new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol. Med., 20 (4), 224–233.
88. Unsinger J., McGlynn M., Kasten K.R. et al. (2010). IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J. Immunol., 184 (7), 3768–3779.
89. Hiraki S., Ono S., Tsujimoto H. et al. (2012). Neutralization of interleukin-10 or transforming growth factor-β decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival. Surgery, 151 (2), 313– 322.
Review
For citations:
Streltsova Е.I., Peshkova I.V., Samatov I.Yu., Valeeva V.А., Vereshchagin Е.I. Lymphopenia as a determinant factor of sepsis severity, as an exact diagnostic criterion, and as an object of therapy. Journal of Siberian Medical Sciences. 2020;(3):108-125. https://doi.org/10.31549/2542-1174-2020-3-108-125