Preview

Journal of Siberian Medical Sciences

Advanced search

Prediction of the biological behavior of tumors: colorectal cancer case study. Retrospective and future outlook

https://doi.org/10.31549/2542-1174-2021-4-80-96

Abstract

Attempts to determine the biological behavior of tumors have been an integral part of research in oncology for nearly 100 years. During this period, many works have been carried out to assess the value of individual factors, including both clinical information about the patient and the pathomorphological features of the tumor. Various systems have been pro-posed and modified, combining all possible combinations of neoplasm characteristics and epidemiological parameters. Thus, approaches to predicting the biological behavior of tumors can be conditionally divided into two types: the first, an analytical approach, is based on revealing individual morphological or clinical factors that affect the course of the tumor process, and the second, a systemic approach, which consists in combining several related and interacting constitute signs into a unified predictive model. Existing tumor classification systems are far from perfect. Nevertheless, the general consensus among pathologists, surgeons, and clinical oncologists is that prognosis parameters deserve to be a part of the standard pathology report for most tumors.

About the Authors

А. S. Konstantinov
Saint Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological); Saint Petersburg Medico-Social Institute
Russian Federation

Aleksey S. Konstantinov — Pathologist; Assistant, Department of Pathological Anatomy 

Pesochniy town, 68А, Leningradskaya Str., Saint Petersburg, 197758 



K. V. Shelekhova
Saint Petersburg Clinical Scientific and Practical Center for Specialized Types of Medical Care (Oncological); Saint Petersburg Medico-Social Institute; Military Medical Academy named after S.M. Kirov
Russian Federation

Kseniya V. Shelekhova — Dr. Sci. (Med.), Head, Department of Pathological Anatomy; Professor, Head, Department of Pathological Anatomy; Senior Lecturer, Department of Pathological Anatomy

Saint Petersburg



References

1. Faguet G.B. (2015). A brief history of cancer: age-old milestones underlying our current knowledge database. Int. J. Cancer, 13, 2022–2036. doi: 10.1002/ijc.29134.

2. Costas-Chavarri A., Nandakumar G., Temin S. et al. (2019). Treatment of patients with early-stage colorectal cancer: ASCO resource-stratified guideline. J. Glob. Oncol., 5, 1–19. doi: 10.1200/JGO.18.00214.

3. Watanabe T., Muro K., Ajioka Y. et al. (2018). Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int. J. Clin. Oncol., 23 (1), 1–34. doi: 10.1007/s10147-017-1101-6.

4. Broders A.C. (1920). Squamous cell epithelioma of the lip: A study of five hundred and thirty-seven cases. JAMA, 74 (10), 656–664. doi: 10.1001/jama.1920.02620100016007.

5. Broders A.C. (1960). Milestones in a Medical Career [unpublished memoir]. 74 p. History of Medicine Library, Mayo Foundation, Rochester, MN (MHU No. 0670).

6. Dukes C. (1937). Histological grading of rectal cancer. Proc. Royal Soc. Med., 30 (4), 371–376.

7. Broders A.C., Buie L.A., Laird D.R. (1940). Prognosis in carcinoma of the rectum: a comparison of the Broders and Dukes methods of classification. JAMA, 115 (13), 1066–1071. doi: 10.1001/jama.1940.02810390006002.

8. Clinical Practice Guidelines in Oncology. Colon cancer. Version 2.2021 (2021). NCCS guidelines, 1–198.

9. Argilés G., Tabernero J., Labianca R. et al. (2020). Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 31 (10), 1291–1305. doi: 10.1016/j.annonc.2020.06.022.

10. Pagès F., Mlecnik B., Marliot F. et al. (2018). International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 391 (10135), 2128–2139. doi: 10.1016/S0140-6736(18)30789-X.

11. Konishi T., Shimada Y., Lee L.H. et al. (2018). Poorly differentiated clusters predict colon cancer recurrence: an in-depth comparative analysis of invasive-front prognostic markers. Am. J. Surg. Pathol., 42 (6), 705– 714. doi: 10.1097/PAS.0000000000001059.

12. WHO Classification of Tumours. 5th ed. Digestive System Tumours / ed. by the WHO Classification of Tumours Editorial Board. (2019). IARC, 635 p.

13. Betge J., Pollheimer M.J., Lindtner R.A. et al. (2012). Intramural and extramural vascular invasion in colorectal cancer: prognostic significance and quality of pathology reporting. Cancer, 118 (3), 628–638. doi: 10.1002/cncr.26310.

14. Messenger D.E., Driman D.K., Kirsch R. (2012). Developments in the assessment of venous invasion in colorectal cancer: implications for future practice and patient outcome. Hum. Pathol., 43 (7), 965–973. doi: 10.1016/j.humpath.2011.11.015.

15. Ouchi K., Sugawara T., Ono H. et al. (1996). Histologic features and clinical significance of venous invasion in colorectal carcinoma with hepatic metastasis. Cancer, 78 (11), 2313–2317. doi: 10.1002/(sici)1097-0142(19961201)78:11<2313::aid-cncr7>3.0.co;2-n.

16. Gomez D., Zaitoun A.M., De Rosa A. et al. (2014). Critical review of the prognostic significance of pathological variables in patients undergoing resection for colorectal liver metastases. HPB (Oxford), 16 (9), 836–844. doi: 10.1111/hpb.12216.

17. Hu G., Li L., Hu K. (2020). Clinical implications of perineural invasion in patients with colorectal cancer. Medicine (Baltimore), 99 (17), e19860. doi: 10.1097/MD.0000000000019860.

18. Ueno H., Shirouzu K., Eishi Y. et al. (2013). Study Group for Perineural Invasion projected by the Japanese Society for Cancer of the Colon and Rectum (JSCCR). Characterization of perineural invasion as a component of colorectal cancer staging. Am. J. Surg. Pathol., 37 (10), 1542–1549. doi: 10.1097/PAS.0b013e318297ef6e.

19. Ozturk M.A., Dane F., Karagoz S. et al. (2015). Is perineural invasion (PN) a determinant of disease-free survival in early-stage colorectal cancer? Hepatogastroenterology, 62 (137), 59–64.

20. Petrelli F., Pezzica E., Cabiddu M. et al. (2015). Tumour budding and survival in stage ii colorectal cancer: a systematic review and pooled analysis. J. Gastrointest. Cancer, 46 (3), 212–218. doi: 10.1007/s12029-015-9716-1.

21. Lugli A., Kirsch R., Ajioka Y. et al. (2017). Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol., 30 (9), 1299–1311. doi: 10.1038/modpathol.2017.46.

22. van Wyk H.C., Roseweir A., Alexander P. et al. (2019). The relationship between tumor budding, tumor microenvironment, and survival in patients with primary operable colorectal cancer. Ann. Surg. Oncol., 26 (13), 4397–4404. doi: 10.1245/s10434-019-07931-6.

23. O’Sullivan B., Brierley J.D., D’Cruz A.K. et al. (eds.) UICC Manual of Clinical Oncology. 9th ed. (2015). Wiley Blackwell. 856 p.

24. Mehta A., Goswami M., Sinha R., Dogra A. (2018). Histopathological significance and prognostic impact of tumor budding in colorectal cancer. Asian. Pac. J. Cancer. Prev., 19 (9), 2447–2453. doi: 10.22034/APJCP.2018.19.9.2447.

25. Mittal V. (2018). Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 13, 395–412. doi: 10.1146/annurev-pathol-020117-043854.

26. Yamada N., Sugai T., Eizuka M. et al. (2017). Tumor budding at the invasive front of colorectal cancer may not be associated with the epithelial-mesenchymal transition. Hum. Pathol., 60 (9), 151–159. doi: 10.1016/j.humpath.2016.10.007.

27. Virchow R. (1989). Cellular pathology. As based upon physiological and pathological histology. Lecture XVI — Atheromatous affection of arteries. 1858. Nutr. Rev., 47 (1), 23–25. doi: 10.1111/j.1753-4887.1989.tb02747.x.

28. Hanahan D., Weinberg R.A. (2011). Hallmarks of cancer: the next generation. Cell, 144 (5), 646–674. doi: 10.1016/j.cell.2011.02.013.

29. Hui L., Chen Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Lett., 368 (1), 7–13. doi: 10.1016/j.canlet.2015.07.039.

30. Hellström I., Hellström K.E., Pierce G.E., Yang J.P. (1968). Cellular and humoral immunity to different types of human neoplasms. Nature, 220 (5174), 1352– 1354. doi: 10.1038/2201352a0.

31. Dirnhofer S., Zippelius A. (2019). Cancer immunology, inflammation, and tolerance: an introduction. Virchows Arch., 474 (4), 405–406. doi: 10.1007/s00428-019-02547-3.

32. Rhee I. (2016). Diverse macrophages polarization in tumor microenvironment. Arch. Pharm. Res., 39 (11), 1588–1596. doi: 10.1007/s12272-016-0820-y.

33. Chen Y., Song Y., Du W. et al. (2019). Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci., 26 (1), 78. doi: 10.1186/s12929-019-0568-z.

34. Hagemann T., Lawrence T., McNeish I. et al. (2008). “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med., 205 (6), 1261–1268. doi: 10.1084/jem.20080108.

35. Shime H., Matsumoto M., Oshiumi H. et al. (2012). Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc. Natl. Acad. Sci. USA, 109 (6), 2066–2071. doi: 10.1073/pnas.1113099109.

36. Pyonteck S.M., Akkari L., Schuhmacher A.J. et al. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 19 (10), 1264–1272. doi: 10.1038/nm.3337.

37. Algars A., Irjala H., Vaittinen S. et al. (2012). Type and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. Int. J. Cancer, 131 (4), 864–873. doi: 10.1002/ijc.26457.

38. Tuccitto A., Shahaj E., Vergani E. et al. (2019). Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Arch., 474 (4), 407–420. doi: 10.1007/s00428-018-2477-z.

39. Komi D.E.A., Redegeld F.A. (2020). Role of mast cells in shaping the tumor microenvironment. Clin. Rev. Allergy Immunol., 58 (3), 313–325. doi: 10.1007/s12016-019-08753-w.

40. Quail D.F., Joyce J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 19 (11), 1423–1437. doi: 10.1038/nm.3394.

41. Dong H., Markovic S.N. (eds.) (2018). The Basics of Cancer Immunotherapy. Springer, 172 p.

42. Ohue Y., Nishikawa H. (2019). Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 110 (7), 2080–2089. doi: 10.1111/cas.14069.

43. Galon J., Lanzi A. (2020). Immunoscore and its introduction in clinical practice. Q. J. Nucl. Med. Mol. Imaging, 64 (2), 152–161. doi: 10.23736/S1824-4785.20.03249-5.

44. Zamarron B.F., Chen W. (2011). Dual roles of immune cells and their factors in cancer development and progression. Int. J. Biol. Sci., 7 (5), 651–658. doi: 10.7150/ijbs.7.651.

45. Steyerberg E.W., Moons K.G.M., van der Windt D.A. et al. (2013). Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med., 10 (2), e1001381. doi: 10.1371/journal.pmed.1001381.

46. Altybaev S.N. (2018). Clinical and morphological features of rectal adenocarcinoma associated with lymphogenous metastasis. Cand. Sci. (Med.) thesis, abstract. Tomsk, 25 p. (In Russ.)

47. Rachkovskiy K.V. (2019). Features of expression of autophagy regulators m-TOR and Beclin-1 in tumors in colorectal cancer. Cand. Sci. (Med.) thesis, abstract. Tomsk, 26 p. (In Russ.)

48. Giraldo N.A., Peske J.D., Sautès-Fridman C., Fridman W.H. (2019). Integrating histopathology, immune biomarkers, and molecular subgroups in solid cancer: the next step in precision oncology. Virchows Arch., 474 (4), 463–474. doi: 10.1007/s00428-018-02517-1.


Review

For citations:


Konstantinov А.S., Shelekhova K.V. Prediction of the biological behavior of tumors: colorectal cancer case study. Retrospective and future outlook. Journal of Siberian Medical Sciences. 2021;(4):80-96. https://doi.org/10.31549/2542-1174-2021-4-80-96

Views: 148


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)