Аберрантная экспрессия и метилирование генов отдельных микроРНК при лимфопролиферативных заболеваниях: обзор литературы
https://doi.org/10.31549/2542-1174-2021-4-108-133
Аннотация
В последние десятилетия обнаружено, что микроРНК участвуют практически во всех клеточных процессах, в том числе в развитии опухолей.
В представленном обзоре рассмотрена молекулярно-генетическая характеристика ряда микроРНК, функционирующих при нормальном кроветворении, нарушение экспрессии которых показано при развитии лимфопролиферативных заболеваний. Приведены последние опубликованные результаты исследований по диагностическому, прогностическому и клиническому значению метилирования генов рассматриваемых микроРНК при злокачественных новообразованиях системы крови.
Ключевые слова
Об авторах
Е. Н. ВоропаеваРоссия
Воропаева Елена Николаевна — д-р мед. наук, ст. научный сотрудник лаборатории молекулярно-генетических исследований терапевтических заболеваний
Новосибирск
О. В. Березина
Россия
Березина Ольга Валерьевна — канд. мед. наук, врач-гематолог, ассистент кафедры терапии, гематологии и трансфузиологии
М. И. Чуркина
Россия
Чуркина Мария Игоревна — аспирант кафедры терапии, гематологии и трансфузиологии
630091, г. Новосибирск, Красный пр., 52
Т. И. Поспелова
Россия
Поспелова Татьяна Ивановна — д-р мед. наук, профессор, заведующий кафедрой терапии, гематологии и трансфузиологии
А. А. Лызлова
Россия
Лызлова Арина Андреевна — врач-гематолог
В. Н. Максимов
Россия
Максимов Владимир Николаевич — д-р мед. наук, главный научный сотрудник, заведующий лабораторией молекулярно-генетических исследований терапевтических заболеваний
Новосибирск
Список литературы
1. Hannafon B.N., Cai A., Calloway C.L. et al. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study // BMC Cancer. 2019. Vol. 19: 642. doi: 10.1186/s12885-019-5839-2.
2. Ambros V., Bartel B., Bartel D.P. et al. A uniform system for microRNA annotation // RNA. 2003. Vol. 9 (3). P. 277–279. doi: 10.1261/rna.2183803.
3. Fabian M.R., Sonenberg N., Filipowicz W. Regulation of mRNA translation and stability by microRNAs // Ann. Rev. Biochem. 2010. Vol. 79. P. 351–379. doi: 10.1146/annurev-biochem-060308-103103.
4. Аушев В.Н. МикроРНК: малые молекулы с большим значением // Клин. онкогематология. 2015. Т. 8, № 1. С. 1–12.
5. Musilova K., Mraz M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex // Leukemia. 2015. Vol. 29 (5). P. 1004–1017. doi: 10.1038/leu.2014.351.
6. O’Connell R.M., Baltimore D. MicroRNAs and hematopoietic cell development // Curr. Top. Dev. Biol. 2012. Vol. 99. P. 145–174. doi: 10.1016/B978-0-12-387038-4.00006-9.
7. Mazan-Mamczarz K., Gartenhaus R.B. Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) // Leuk. Res. 2013. Vol. 37 (11). P. 1420–1428. doi: 10.1016/j.leukres.2013.08.020.
8. Chen X., Hu H., Guan X. et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma // Int. J. Cancer. 2012. Vol. 130 (7). P. 1607– 1613. doi: 10.1002/ijc.26171.
9. Wong K.Y., Yim R.L.H., Kwong Y.L. et al. Epigenetic inactivation of the MIR129-2 in hematological malignancies // J. Hematol. Oncol. 2013. Vol. 6: 16. doi: 10.1186/1756-8722-6-16.
10. Baylin S.B., Jones P.A. Epigenetic determinants of cancer // Cold Spring Harb. Perspect. Biol. 2016. Vol. 8 (9): a019505. doi: 10.1101/cshperspect.a019505.
11. Yang J., Sun G., Hu Y. et al. Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating miR-129-5p/high mobility group box-1 protein axis // Front. Immunol. 2020. Vol. 10: 3161. doi: 10.3389/fimmu.2019.03161.
12. He Y., Huang C., Zhang L., Li J. Epigenetic repression of miR-129-2 in cancer // Liver Int. 2014. Vol. 34 (4): 646. doi: 10.1111/liv.12367.
13. Пронина И.В., Климов Е.А., Бурденный А.М. и др. Метилирование генов микроРНК miR-129-2, miR-9-1, изменение их экспрессии и активация генов потенциальных мишеней этих микроРНК при раке почки // Молекулярная биология. 2017. T. 51, № 1. C. 73–84.
14. Daniunaite K., Dubikaityte M., Gibas P. et al. Clinical significance of miRNA host gene promoter methylation in prostate cancer // Hum. Mol. Genet. 2017. Vol. 26 (13). P. 2451–2461. doi: 10.1093/hmg/ddx138.
15. Tian Y.X., Zhang L., Sun L.G., Li M. Epigenetic regulation of miR-129-2 leads to overexpression of PDGFRa and FoxP1 in glioma cells // Asian Pac. J. Cancer Prev. 2015. Vol. 16 (14). P. 6129–6133. doi: 10.7314/apjcp.2015.16.14.6129.
16. Deng B., Tang X., Wang Y. (2021). Role of microRNA-129 in cancer and non-cancerous diseases. Exp. Ther. Med., 22 (3), 918. doi: 10.3892/etm.2021.10350.
17. Torres-Ferreira J., Ramalho-Carvalho J., Gomez A. et al. MiR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors // Mol. Cancer. 2017. Vol. 16 (1): 26. doi: 10.1186/s12943-017-0604-0.
18. Heydarzadeh S., Ranjbar M., Karimi F., Seif F., Alivand M.R. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors // Cell. Biosci. 2021. Vol. 11 (1): 43. doi: 10.1186/s13578-021-00552-1.
19. Tsai K.W., Wu C.W., Hu L.Y. et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer // Int. J. Cancer. 2011. Vol. 129 (11). P. 2600–2610. doi: 10.1002/ijc.25919.
20. Gebhardt K., Edemir B., Groß E. et al. BRAF/EZH2 signaling represses miR-129-5p inhibition of SOX4 thereby modulating BRAFi resistance in melanoma // Cancers (Basel). 2021. Vol. 13 (10): 2393. doi: 10.3390/cancers13102393.
21. Koens L., Qin Y., Leung W.Y. et al. MicroRNA profiling of primary cutaneous large B-cell lymphomas // PLoS One. 2013. Vol. 8 (12): e82471. doi: 10.1371/journal.pone.0082471.
22. Mei M., Wang Y., Wang Q. et al. CircCDYL serves as a new biomarker in mantle cell lymphoma and promotes cell proliferation // Cancer Manag. Res. 2019. Vol. 11. P. 10215–10221. doi: 10.2147/CMAR.S232075.
23. Kim D., Nguyen Q.T., Lee J. et al. Anti-inflammatory roles of glucocorticoids are mediated by Foxp3+ regulatory T cells via a miR-342-dependent mechanism // Immunity. 2020. Vol. 53 (3). P. 581–596. doi: 10.1016/j.immuni.2020.07.002.
24. Wang H., Wu J., Meng X. et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase // Carcinogenesis. 2011. Vol. 32 (7). P. 1033–1042. doi: 10.1093/carcin/bgr081.
25. Tai M.C., Kajino T., Nakatochi M. et al. miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer // Carcinogenesis. 2015. Vol. 36 (12). P. 1464–1473. doi: 10.1093/carcin/bgv152.
26. Gowda P.S., Wildman B.J., Trotter T.N. et al. Run x2 suppression by miR-342 and miR-363 inhibits multiple myeloma progression // Mol. Cancer Res. 2018. Vol. 16 (7). P. 1138–1148. doi: 10.1158/1541-7786.MCR-17-0606.
27. Weng W., Okugawa Y., Toden S. et al. FOXM1 and FOXQ1 are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer // Clin. Cancer Res. 2016. Vol. 22 (19). P. 4947–4957. doi: 10.1158/1078-0432.CCR-16-0360.
28. Li Z., Wong K.Y., Chan G.C., Chng W.J., Chim C.S. Epigenetic silencing of EVL/miR-342 in multiple myeloma // Transl. Res. 2018. Vol. 192. P. 46–53. doi: 10.1016/j.trsl.2017.11.005.
29. Bai Y., Li Y., Bai J., Zhang Y. Hsa_circ_0004674 promotes osteosarcoma doxorubicin resistance by regulating the miR-342-3p/FBN1 axis // J. Orthop. Surg. Res. 2021. Vol. 16 (1): 510. doi: 10.1186/s13018-021-02631-y.
30. Veys C., Benmoussa A., Contentin R. et al. Tumor suppressive role of miR-342-5p in human chondrosarcoma cells and 3D organoids // Int. J. Mol. Sci. 2021. Vol. 22 (11): 5590. doi: 10.3390/ijms22115590.
31. Romero-Cordoba S.L., Rodriguez-Cuevas S., BautistaPina V. et al. Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer // Sci. Rep. 2018. Vol. 8 (1): 12252. doi: 10.1038/s41598-018-29708-9.
32. Ghafouri-Fard S., Dashti S., Farsi M., Hussen B.M., Taheri M. A review on the role of oncogenic lncRNA OIP5-AS1 in human malignancies // Biomed. Pharmacother. 2021. Vol. 137: 111366. doi: 10.1016/j.biopha.2021.111366.
33. Chen Z., Ying J., Shang W. et al. miR-342-3p regulates the proliferation and apoptosis of NSCLC cells by targeting BCL-2 // Technol. Cancer Res. Treat. 2021. Vol. 20: 15330338211041193. doi: 10.1177/15330338211041193.
34. Zhou L., Li J., Tang Y., Yang M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis // J. Transl. Med. 2021. Vol. 19 (1): 8. doi: 10.1186/s12967-020-02648-7.
35. Wang J., Yang Y., Cao Y., Tang X. miR-342 inhibits glioma cell proliferation by targeting GPRC5A // Mol. Med. Rep. 2019. Vol. 20 (1). P. 252–260. doi: 10.3892/mmr.2019.10242.
36. Young J., Kawaguchi T., Yan L. et al. Tamoxifen sensitivity-related microRNA-342 is a useful biomarker for breast cancer survival // Oncotarget. 2017. Vol. 8 (59). P. 99978–99989. doi: 10.18632/oncotarget.21577.
37. Li X.R., Chu H.J., Lu T. et al. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer // FEBS Lett. 2014. Vol. 588 (17). P. 3298–3307. doi: 10.1016/j.febslet.2014.07.020.
38. Zhang M.Y., Calin G.A., Yuen K.S., Jin D.Y., Chim C.S. Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy // Clin. Epigenetics. 2020. Vol. 12 (1): 150. doi: 10.1186/s13148-020-00926-1.
39. Kersy O., Salmon-Divon M., Shpilberg O., Hershkovitz-Rokah O. Non-coding RNAs in normal B-cell development and in mantle cell lymphoma: from molecular mechanism to biomarker and therapeutic agent potential // Int. J. Mol. Sci. 2021. Vol. 22 (17): 9490. doi: 10.3390/ijms22179490.
40. Mo J.S., Park Y.R., Chae S.C. MicroRNA 196B regulates HOXA5, HOXB6 and GLTP expression levels in colorectal cancer cells // Pathol. Oncol. Res. 2019. Vol. 25 (3). P. 953–959. doi: 10.1007/s12253-018-0399-3.
41. Li Z., Huang H., Chen P. et al. Publisher correction: miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia // Nat. Commun. 2018. Vol. 9: 16192. doi: 10.1038/ncomms16192.
42. Hou Y.Y., You J.J., Yang C.M. et al. Aberrant DNA hypomethylation of miR-196b contributes to migration and invasion of oral cancer // Oncol. Lett. 2016. Vol. 11 (6). P. 4013–4021. doi: 10.3892/ol.2016.4491.
43. Bhatia S., Kaul D., Varma N. Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia // Mol. Cell Biochem. 2010. Vol. 340 (1–2). P. 97–106. doi: 10.1007/s11010-010-0406-9.
44. Tellez C.S., Juri D.E., Do K. et al. miR-196b is epigenetically silenced during the premalignant stage of lung carcinogenesis // Cancer Res. 2016. Vol. 76 (16). P. 4741–4751. doi: 10.1158/0008-5472.CAN-15-3367.
45. Kanno S., Nosho K., Ishigami K. et al. MicroRNA-196b is an independent prognostic biomarker in patients with pancreatic cancer // Carcinogenesis. 2017. Vol. 38 (4). P. 425–431. doi: 10.1093/carcin/bgx013.
46. Abe W., Nasu K., Nakada C. et al. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells // Hum. Rep. 2013. Vol. 28. P. 750–761. doi: 10.1093/humrep/des446.
47. Chen C., Zhang Y., Zhang L., Weakley S.M., Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer // J. Cell. Mol. Med. 2011. Vol. 15 (1). P. 14–23. doi: 10.1111/j.1582-4934.2010.01219.x.
48. Li Y., Li J., Liu Z., Zhang Y. High expression of miR-196b predicts poor prognosis in patients with ovarian cancer // Onco Targets Ther. 2020. Vol. 13. P. 9797–9806. doi: 10.2147/OTT.S254942.
49. Wei H., Zhang J., Tan K. et al. Benzene-induced aberrant miRNA expression profile in hematopoietic progenitor cells in C57BL/6 mice // Int. J. Mol. Sci. 2015. Vol. 16 (11). P. 27058–27071. doi: 10.3390/ijms161126001.
50. Li Z., Huang H., Chen P. et al. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia // Nat. Com. 2012. Vol. 3: 688. doi: 10.1038/ncomms1681.
51. Visani M., Marucci G., de Biase D. et al. miR-196B-5P and miR-200B-3P are differentially expressed in medulloblastomas of adults and children // Diagnostics (Basel). 2021. Vol. 11 (9): 1633. doi: 10.3390/diagnostics11091633.
52. Cheng A.J., You G.R., Lee C.J. et al. Systemic investigation identifying salivary miR-196b as a promising biomarker for early detection of head-neck cancer and oral precancer lesions // Diagnostics (Basel). 2021. Vol. 11 (8): 1411. doi: 10.3390/diagnostics11081411.
53. Shafik R.E., Abd Wahab N., Mokhtar M.M., El Taweel M.A., Ebeid F. Expression of microRNA-181a and microRNA-196b in egyptian pediatric acute lymphoblastic leukemia // Asian Pac. J. Cancer Prev. 2020. Vol. 21 (11). P. 3429–3434. doi: 10.31557/APJCP.2020.21.11.3429.
54. Liu Y., Zheng W., Song Y., Ma W., Yin H. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis // PLoS One. 2013. Vol. 8: e68442. doi: 10.1371/journal.pone.0068442.
55. Schotte D., Lange-Turenhout E.A., Stumpel D.J. et al. Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia // Haematologica. 2010. Vol. 95 (10). P. 1675–1682. doi: 10.3324/haematol.2010.023481.
56. Saki N., Abroun S., Soleimani M. et al. Involvement of microRNA in T-cell differentiation and malignancy // Int. J. Hematol. Oncol. Stem. Cell Res. 2015. Vol. 9 (1). P. 33–49.
57. Hurtado López A.M., Chen-Liang T.H., Zurdo M. et al. Cancer testis antigens in myelodysplastic syndromes revisited: a targeted RNA-seq approach // Oncoimmunology. 2020. Vol. 9 (1): 1824642. doi: 10.1080/2162402X.2020.1824642.
58. Dombret H., Seymour J.F., Butrym A. et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts // Blood. 2015. Vol 126 (3). P. 291–299. doi: 10.1182/blood-2015-01-621664.
59. Luan C., Yang Z., Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy // Onco Targets Ther. 2015. Vol. 8. P. 2903–2914. doi: 10.2147/OTT.S92470.
60. Muraoka T., Soh J., Toyooka S. et al. Impact of aberrant methylation of microRNA-9 family members on non-small cell lung cancers // Mol. Clin. Oncol. 2013. Vol. 1 (1). P. 185–189. doi: 10.3892/mco.2012.18.
61. Jia D., Lin W., Tang H. et al. Integrative analysis of DNA methylation and gene expression to identify key epigenetic genes in glioblastoma // Aging (Albany NY). 2019. Vol. 11 (15). P. 5579–5592. doi: 10.18632/aging.102139.
62. Zhang J., Cheng J., Zeng Z. et al. Comprehensive profiling of novel microRNA-9 targets and a tumor suppressor role of microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma // Oncotarget. 2015. Vol. 6 (39). P. 42040–42052. doi: 10.18632/oncotarget.5969.
63. Zhang J., Jia J., Zhao L. et al. Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell // Mol. Carcinogen. 2016. Vol. 55 (5). P. 732–742. doi: 10.1002/mc.22317.
64. Zhu M., Xu Y., Ge M., Gui Z., Yan F. Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis // Cancer Sci. 2015. Vol. 106 (7). P. 833–839. doi: 10.1111/cas.12689.
65. Vrabec K., Boštjančič E., Koritnik B. et al. Differential expression of several miRNAs and the host genes AATK and DNM2 in leukocytes of sporadic ALS patients // Front. Mol. Neurosci. 2018. Vol. 11: 106. doi: 10.3389/fnmol.2018.00106.
66. Roman-Gomez J., Agirre X., Jiménez-Velasco A. et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia // J. Clin. Oncol. 2009. Vol. 27 (8). P. 1316–1322. doi: 10.1200/JCO.2008.19.3441.
67. Cui Y., Xue Y., Dong S., Zhang P. Plasma microRNA-9 as a diagnostic and prognostic biomarker in patients with esophageal squamous cell carcinoma // J. Int. Med. Res. 2017. Vol. 45 (4). P. 1310–1317. doi: 10.1177/0300060517709370.
68. Mittal N., Li L., Sheng Y. et al. A critical role of epigenetic inactivation of miR-9 in EVI1high pediatric AML // Mol. Cancer. 2019. Vol. 18 (1): 30. doi: 10.1186/s12943-019-0952-z.
69. Rodriguez-Otero P., Román-Gómez J., Vilas-Zornoza A. et al. Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the miR9 fa mily // Br. J. Haematol. 2011. Vol. 155 (1). P. 73–83. doi: 10.1111/j.1365-2141.2011.08812.x.
70. Gao L., Cheng D., Yang J. et al. Sulforaphane epigenetically demethylates the CpG sites of the miR- 9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells // J. Nutr. Biochem. 2018. Vol. 56. P. 109–115. doi: 10.1016/j.jnutbio.2018.01.015.
71. Emmrich S., Katsman-Kuipers J.E., Henke K. et al. miR-9 is a tumor suppressor in pediatric AML with t(8;21) // Leukemia. 2014. Vol. 28 (5). P. 1022–1032. doi: 10.1038/leu.2013.357.
72. Kim B.G., Gao M.Q., Kang S. et al. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation // Cell Death Dis. 2017. Vol. 8 (3): e2646. doi: 10.1038/cddis.2017.73.
73. Liu S., Kumar S.M., Lu H. et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma // J. Pathol. 2012. Vol. 226 (1). P. 61–72. doi: 10.1002/path.2964.
74. Senyuk V., Zhang Y., Liu Y. et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110 (14). P. 5594–5599. doi: 10.1073/pnas.1302645110.
75. Panuzzo C., Signorino E., Calabrese C. et al. Landscape of tumor suppressor mutations in acute myeloid leukemia // J. Clin. Med. 2020. Vol. 9 (3): 802. doi: 10.3390/jcm9030802.
76. Zhou L., Fu L., Lv N. et al. A minicircuitry comprised of microRNA-9 and SIRT1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia // Eur. Rev. Med. Pharmacol. Sci. 2017. Vol. 21 (4). P. 786–794.
77. Alhasan L. MiR-126 modulates angiogenesis in breast cancer by targeting VEGF-A-mRNA // Asian Pac. J. Cancer Prev. 2019. Vol. 20 (1). P. 193–197. doi: 10.31557/APJCP.2019.20.1.193.
78. Saito Y., Friedman G.F., Chihara Y. et al. Epigenetic therapy upregulates the tumour suppressor microRNA-126 and its host gene EGFL7 in human cancer cells // Biochem. Biophys. Res. Commun. 2009. Vol. 379 (3). P. 726–731. doi: 10.1016/j.bbrc.2008.12.098.
79. Zhao C., Li Y., Zhang M., Yang Y., Chang L. miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2 // Hum. Cell. 2015. Vol. 28 (2). P. 91–99. doi: 10.1007/s13577-014-0105-z.
80. Li F. Expression and correlation of miR-124 and miR- 126 in breast cancer // Oncol. Lett. 2019. Vol. 17 (6). P. 5115–5119. doi: 10.3892/ol.2019.10184.
81. Liu R., Zhang Y.S., Zhang S. et al. MiR-126-3p suppresses the growth, migration and invasion of NSCLC via targeting CCR1 // Eur. Rev. Med. Pharmacol. Sci. 2019. Vol. 23 (2). P. 679–689. doi: 10.26355/eurrev_201901_16881.
82. Moradi Sarabi M., Zahedi S.A., Pajouhi N. et al. The effects of dietary polyunsaturated fatty acids on miR- 126 promoter DNA methylation status and VEGF protein expression in the colorectal cancer cells // Genes Nutr. 2018. Vol. 13: 32. doi: 10.1186/s12263-018-0623-5.
83. Miao Y., Lu J., Fan B., Sun L. MicroRNA-126-5p inhibits the migration of breast cancer cells by directly targeting CNOT7 // Technol. Cancer Res. Treat. 2020. Vol. 19: 1533033820977545. doi: 10.1177/1533033820977545.
84. Yu J., Fan Q., Li L. The MCM3AP-AS1/miR-126/ VEGF axis regulates cancer cell invasion and migration in endometrioid carcinoma // World J. Surg. Oncol. 2021. Vol. 19 (1): 213. doi: 10.1186/s12957-021-02316-0.
85. Chen S.R., Cai W.P., Dai X.J. et al. Research on miR- 126 in glioma targeted regulation of PTEN/PI3K/ Akt and MDM2-p53 pathways // Eur. Rev. Med. Pharmacol. Sci. 2019. Vol. 23 (8). P. 3461–3470. doi: 10.26355/eurrev_201904_17711.
86. Chen W., Yu J., Xie R. et al. Roles of the SNHG7/ microRNA-9-5p/DPP4 ceRNA network in the growth and 131I resistance of thyroid carcinoma cells through PI3K/Akt activation // Oncol. Rep. 2021. Vol. 45 (4): 3. doi: 10.3892/or.2021.7954.
87. Takashima Y., Kawaguchi A., Iwadate Y. et al. MicroRNA signature constituted of miR-30d, miR- 93, and miR-181b is a promising prognostic marker in primary central nervous system lymphoma // PLoS One. 2019. Vol. 14 (1): e0210400. doi: 10.1371/journal.pone.0210400.
88. Chen H.H., Huang W.T., Yang L.W., Lin C.W. The PTEN-AKT-mTOR/RICTOR pathway in nasal natural killer cell lymphoma is activated by miR-494-3p via PTEN but inhibited by miR-142-3p via RICTOR // Am. J. Pathol. 2015. Vol. 185 (5). P. 1487–1499. doi: 10.1016/j.ajpath.2015.01.025.
89. Bong I.P.N., Ng C.C., Baharuddin P., Zakaria Z. MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy // Genes Genomics. 2017. Vol. 39 (5). P. 533–540. doi: 10.1007/s13258-017-0518-7.
90. Andrade T.A., Evangelista A.F., Campos A.H. et al. A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly // Oncotarget. 2014. Vol. 5 (23). P. 11813–11826. doi: 10.18632/oncotarget.
91. Borges N.M., do Vale Elias M., Fook-Alves V.L. et al. AngiomiRs expression profiling in diffuse large B-Cell lymphoma // Oncotarget. 2016. Vol. 7 (4). P. 4806– 4816. doi: 10.18632/oncotarget.6624.
92. Li Z., Lu J., Sun M. et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations // Sci. USA. 2008. Vol. 105 (40). P. 15535–15540. doi: 10.1073/pnas.0808266105.
93. Cammarata G., Augugliaro L., Salemi D. et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia // Am. J. Hematol. 2010. Vol. 85 (5). P. 331–339. doi: 10.1002/ajh.21667.
94. Peveling-Oberhag J., Crisman G., Schmidt A. et al. Dysregulation of global microRNA expression in splenic marginal zone lymphoma and influence of chronic hepatitis C virus infection // Leukemia. 2012. Vol. 26 (7). P. 1654–1662. doi: 10.1038/leu.2012.29.
95. Schoof E.M., Lechman E.R., Dick J.E. Global proteomics dataset of miR-126 overexpression in acute myeloid leukemia // Data Brief. 2016. Vol. 9. P. 57–61. doi: 10.1016/j.dib.2016.07.035.
96. Ishihara K., Sasaki D., Tsuruda K. et al. Impact of miR- 155 and miR-126 as novel biomarkers on the assessment of disease progression and prognosis in adult T-cell leukemia // Cancer Epidemiol. 2012. Vol. 36 (6). P. 560–565. doi: 10.1016/j.canep.2012.07.002.
97. Kopp K.L., Ralfkiaer U., Nielsen B.S. et al. Expression of miR-155 and miR-126 in situ in cutaneous T-cell lymphoma // APMIS. 2013. Vol. 121 (11). P. 1020– 1024. doi: 10.1111/apm.12162.
98. Cao D., Zhao M., Wan C. et al. Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via miR-126/Aktp53-p21 pathways // Int. Urol. Nephrol. 2019. Vol. 51 (6). P. 1071–1078. doi: 10.1007/s11255-019-02165-7.
99. Cao D.W., Jiang C.M., Wan C. et al. Upregulation of miR-126 delays the senescence of human glomerular mesangial cells induced by high glucose via telomerep53-p21-Rb signaling pathway // Curr. Med. Sci. 2018. Vol. 38 (5). P. 758–764. doi: 10.1007/s11596-018-1942-x.
100. Heissig B., Salama Y., Takahashi S., Okumura K., Hattori K. The multifaceted roles of EGFL7 in cancer and drug resistance // Cancers (Basel). 2021. Vol. 13 (5): 1014. doi: 10.3390/cancers13051014.
101. Tomasetti M., Gaetani S., Monaco F., Neuzil J., Santarelli L. Epigenetic regulation of miRNA expression in malignant mesothelioma: miRNAs as biomarkers of early diagnosis and therapy // Front. Oncol. 2019. Vol. 9: 1293. doi: 10.3389/fonc.2019.01293.
102. Wu C.L., Shan T.D., Han Y. et al. Long intergenic noncoding RNA 00665 promotes proliferation and inhibits apoptosis in colorectal cancer by regulating miR-126-5p // Aging (Albany NY). 2021. Vol. 13 (10). P. 13571–13584. doi: 10.18632/aging.202874.
103. Chen Q., Chen S., Zhao J., Zhou Y., Xu L. MicroRNA-126: A new and promising player in lung cancer // Oncol. Lett. 2021. Vol. 21 (1): 35. doi: 10.3892/ol.2020.12296.
104. Li M., Meng X., Li M. MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy // Aging (Albany NY). 2020. Vol. 12 (12). P. 12107–12118. doi: 10.18632/aging.103379.
105. Cui H., Mu Y., Yu L. et al. Methylation of the miR- 126 gene associated with glioma progression // Fam. Cancer. 2016. Vol. 15 (2). P. 317–324. doi: 10.1007/s10689-015-9846-4.
106. Li W., Kong X., Huang T. et al. Bioinformatic analysis and in vitro validation of a five-microRNA signature as a prognostic biomarker of hepatocellular carcinoma // Ann. Transl. Med. 2020. Vol. 8 (21): 1422. doi: 10.21037/atm-20-2509.
107. Duan J., Lu G., Li Y. et al. miR-137 functions as a tumor suppressor gene in pituitary adenoma by targeting AKT2 // Int. J. Clin. Exp. Pathol. 2019. Vol. 12 (5). P. 1557–1564.
108. Zang Y., Zhu J., Li Q. et al. miR-137-3p modulates the progression of prostate cancer by regulating the JNK3/EZH2 axis // Onco Targets Ther. 2020. Vol. 13. P. 7921–7932. doi: 10.2147/OTT.S256161.
109. Ding F., Zhang S., Gao S. et al. MiR-137 functions as a tumor suppressor in pancreatic cancer by targeting MRGBP // J. Cell Biochem. 2018. Vol. 119 (6). P. 4799–4807. doi: 10.1002/jcb.26676.
110. Wang M., Gao H., Qu H. et al. MiR-137 suppresses tumor growth and metastasis in clear cell renal cell carcinoma // Pharmacol. Reports. 2018. Vol. 70 (5). P. 963–971. doi: 10.1016/j.pharep.2018.04.006.
111. Zhang W., Chen J.H., Shan T. et al. miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation // Lab. Invest. 2018. Vol. 98 (11). P. 1397–1407. doi: 10.1038/s41374-018-0092-x.
112. Huang B., Huang M., Li Q. miR-137 suppresses migration and invasion by targeting EZH2-STAT3 signaling in human hepatocellular carcinoma // Pathol. Res. Pract. 2018. Vol. 214 (12). P. 1980–1986. doi: 10.1016/j.prp.2018.08.005.
113. Bi W.P., Xia M., Wang X.J. miR-137 suppresses proliferation, migration and invasion of colon cancer cell lines by targeting TCF4 // Oncol. Lett. 2018. Vol. 15 (6). P. 8744–8748. doi: 10.3892/ol.2018.8364.
114. Liu X., Chen L., Tian X.D., Zhang T. MiR-137 and its target TGFA modulate cell growth and tumorigenesis of non-small cell lung cancer // Eur. Rev. Med. Pharmacol. Sci. 2017. Vol. 21 (3). P. 511–517.
115. Wang Y., Chen R., Zhou X. et al. miR-137: a novel therapeutic target for human glioma // Mol. Ther. Nucleic Acids. 2020. Vol. 21. P. 614–622. doi: 10.1016/j.omtn.2020.06.028.
116. Huang Y., Zou Y., Zheng R., Ma X. MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B // Eur. J. Haematol. 2019. Vol. 103 (3). P. 215–224. doi: 10.1111/ejh.13276.
117. Abdi J., Jian H., Chang H. Role of micro-RNAs in drug resistance of multiple myeloma // Oncotarget. 2016. Vol. 7 (37). P. 60723–60735. doi: 10.18632/oncotarget.11032.
118. Qin Y., Zhang S., Deng S. et al. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma // Leukemia. 2017. Vol. 31 (5). P. 1123–1135. doi: 10.1038/leu.2016.325.
119. Yang Y., Li F., Saha M.N. et al. miR-137 and miR-197 induce apoptosis and suppress tumorigenicity by targeting MCL-1 in multiple myeloma // Clin. Cancer Res. 2015. Vol. 21 (10). P. 2399–2411. doi: 10.1158/1078-0432.CCR-14-1437.
120. Kozaki K., Imoto I., Mogi S., Omura K., Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer // Cancer Res. 2008. Vol. 68 (7). P. 2094–2105. doi: 10.1158/0008-5472.CAN-07-5194.
121. Chen X., Wang J., Shen H. et al. Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma // Invest. Ophthalmol. Vis. Sci. 2011. Vol. 52 (3). P. 1193–1199. doi: 10.1167/iovs.10-5272.
122. Zhu X., Li Y., Shen H. et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6 // FEBS Lett. 2013. Vol. 587 (1). P. 73–81. doi: 10.1016/j.febslet.2012.11.004.
123. Balaguer F., Link A., Lozano J.J. et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis // Cancer Res. 2010. Vol. 70 (16). P. 6609–6618. doi: 10.1158/0008-5472.
124. Langevin S.M., Stone R.A., Bunker C.H. et al. MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck // Cancer. 2011. Vol. 117 (7). P. 1454–1462. doi: 10.1002/cncr.25689.
125. Hannafon B.N., Ding W. Functional role of miRNAs in the progression of breast ductal carcinoma in situ // Am. J. Pathol. 2019. Vol. 189 (5). P. 966–974. doi: 10.1016/j.ajpath.2018.06.025.
126. Рыков С.В., Ходырев Д.С., Пронина И.В. и др. Новые гены микроРНК, подверженные метилированию в опухолях легкого // Генетика. 2013. Т. 49, № 7. С. 896–901. doi: 10.7868/s0016675813070114.
127. Bondada M.S., Yao Y., Nair V. Multifunctional miR- 155 pathway in avian oncogenic virus-induced neoplastic diseases // Noncoding RNA. 2019. Vol. 5 (1): 24. doi: 10.3390/ncrna5010024.
128. Holubekova V., Mendelova A., Jasek K. et al. Epigenetic regulation by DNA methylation and miRNA molecules in cancer // Future Oncol. 2017. Vol. 13 (25). P. 2217–2222. doi: 10.2217/fon-2017-0363.
129. Huang Q., Shen Y.J., Hsueh C.Y. et al. miR-17-5p drives G2/M-phase accumulation by directly targeting CCNG2 and is related to recurrence of head and neck squamous cell carcinoma // BMC Cancer. 2021. Vol. 21 (1): 1074. doi: 10.1186/s12885-021-08812-6.
130. Larrabeiti-Etxebarria A., Lopez-Santillan M., SantosZorrozua B., Lopez-Lopez E., Garcia-Orad A. Systematic review of the potential of microRNAs in diffuse large B cell lymphoma // Cancers (Basel). 2019. Vol. 11 (2): 144. doi: 10.3390/cancers11020144.
131. Lawrie C., Soneji S., Marafioti T. et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma // Int. J. Cancer. 2007. Vol. 121. P. 1156–1161. doi: 10.1002/ijc.22800.
132. Lawrie C.H., Gal S., Dunlop H.M. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma // Br. J. Haematol. 2008. Vol. 141 (5). P. 672– 675. doi: 10.1111/j.1365-2141.2008.07077.x.
133. Cui B., Chen L., Zhang S. et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia // Blood. 2014. Vol. 124 (4). P. 546–554. doi: 10.1182/blood-2014-03-559690.
134. Mraz M., Chen L., Rassenti L.Z. et al. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1 // Blood. 2014. Vol. 124 (1). P. 84–95. doi: 10.1182/blood-2013-09-527234.
135. Klein U., Lia M., Crespo M. et al. The DLEU2/miR- 15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia // Cancer Cell. 2010. Vol. 17 (1). P. 28–40. doi: 10.1016/j.ccr.2009.11.019.
136. Di Lisio L., Gómez-López G., Sánchez-Beato M. et al. Mantle cell lymphoma: transcriptional regulation by microRNAs // Leukemia. 2010. Vol. 24 (7). P. 1335– 1342. doi: 10.1038/leu.2010.91.
137. Zhao J.J., Lin J., Lwin T. et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma // Blood. 2010. Vol. 115 (13). P. 2630–2639. doi: 10.1182/blood-2009-09-243147.
138. Mraz M., Malinova K., Kotaskova J. et al. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities // Leukemia. 2009. Vol. 23 (6). P. 1159–1163. doi: 10.1038/leu.2008.377.
Рецензия
Для цитирования:
Воропаева Е.Н., Березина О.В., Чуркина М.И., Поспелова Т.И., Лызлова А.А., Максимов В.Н. Аберрантная экспрессия и метилирование генов отдельных микроРНК при лимфопролиферативных заболеваниях: обзор литературы. Journal of Siberian Medical Sciences. 2021;(4):108-133. https://doi.org/10.31549/2542-1174-2021-4-108-133
For citation:
Voropaeva E.N., Berezina O.V., Churkina M.I., Pospelova T.I., Lyzlova A.A., Maksimov V.N. Aberrant expression and methylation of individual microRNAs genes in lymphoproliferative diseases: a literature review. Journal of Siberian Medical Sciences. 2021;(4):108-133. https://doi.org/10.31549/2542-1174-2021-4-108-133