Preview

Journal of Siberian Medical Sciences

Advanced search

Aberrant expression and methylation of individual microRNAs genes in lymphoproliferative diseases: a literature review

https://doi.org/10.31549/2542-1174-2021-4-108-133

Abstract

In recent decades, it has been found that microRNAs are involved in almost all cellular processes, including the development of tumors.
In this paper, we consider the molecular genetic characteristics of a number of microRNAs that function in normal hematopoiesis, whose expression is impaired in the development of lymphoproliferative diseases. The last published results of studies on the diagnostic, prognostic and clinical significance of gene methylation considered by microRNAs in malignant neoplasms of the blood system are presented.

About the Authors

E. N. Voropaeva
Institute of Internal and Preventive Medicine
Russian Federation

Elena N. Voropaeva — Dr. Sci. (Med.), Senior Researcher, Laboratory for Molecular Genetic Research of Therapeutic Diseases 

Novosibirsk



O. V. Berezina
Novosibirsk State Medical University
Russian Federation

Olga V. Berezina — Cand. Sci. (Med.), Hematologist, Assistant, Department of Therapy, Hematology and Transfusiology 



M. I. Churkina
Novosibirsk State Medical University
Russian Federation

Maria I. Churkina — Post-Graduate Student, Department of Therapy, Hematology and Transfusiology 

52, Krasny Prospect, Novosibirsk, 630091 



T. I. Pospelova
Novosibirsk State Medical University
Russian Federation

Tatiana I. Pospelova — Dr. Sci. (Med.), Professor, Head, Department of Therapy, Hematology and Transfusiology 



A. A. Lyzlova
State Novosibirsk Regional Clinical Hospital
Russian Federation

Arina A. Lyzlova — Hematologist 



V. N. Maksimov
Institute of Internal and Preventive Medicine
Russian Federation

Vladimir N. Maksimov — Dr. Sci. (Med.), Chief Researcher, Head, Laboratory for Molecular Genetic Research of Therapeutic Diseases 

Novosibirsk



References

1. Hannafon B.N., Cai A., Calloway C.L. et al. (2019). miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer, 19, 642. doi: 10.1186/s12885-019-5839-2.

2. Ambros V., Bartel B., Bartel D.P. et al. (2003). A uniform system for microRNA annotation. RNA, 9 (3), 277–279. doi: 10.1261/rna.2183803.

3. Fabian M.R., Sonenberg N., Filipowicz W. (2010). Regulation of mRNA translation and stability by microRNAs. Ann. Rev. Biochem., 79, 351–379. doi: 10.1146/annurev-biochem-060308-103103.

4. Aushev V.N. (2015). MicroRNA: small molecules of great significance. Clinical Oncohematology, 8 (1), 1–12.

5. Musilova K., Mraz M. (2015). MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia, 29 (5), 1004–1017. doi: 10.1038/leu.2014.351.

6. O’Connell R.M., Baltimore D. (2012). MicroRNAs and hematopoietic cell development. Curr. Top. Dev. Biol., 99, 145–174. doi: 10.1016/B978-0-12-387038- 4.00006-9.

7. Mazan-Mamczarz K., Gartenhaus R.B. (2013). Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk. Res., 37 (11), 1420–1428. doi: 10.1016/j.leukres.2013.08.020.

8. Chen X., Hu H., Guan X. et al. (2012). CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int. J. Cancer, 130 (7), 1607– 1613. doi: 10.1002/ijc.26171.

9. Wong K.Y., Yim R.L.H., Kwong Y.L. et al. (2013). Epigenetic inactivation of the MIR129-2 in hematological malignancies. J. Hematol. Oncol., 6, 16. doi: 10.1186/1756-8722-6-16.

10. Baylin S.B., Jones P.A. (2016). Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol., 8 (9), a019505. doi: 10.1101/cshperspect.a019505.

11. Yang J., Sun G., Hu Y. et al. (2020). Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating miR-129-5p/high mobility group box-1 protein axis. Front. Immunol., 10, 3161. doi: 10.3389/fimmu.2019.03161.

12. He Y., Huang C., Zhang L., Li J. (2014). Epigenetic repression of miR-129-2 in cancer. Liver Int., 34 (4), 646. doi: 10.1111/liv.12367.

13. Pronina I.V., Klimov E.A., Burdennyj A.M. et al. (2017). Methylation of the genes for the microRNAs miR-129-2 and miR-9-1, changes in their expression, and activation of their potential target genes in clear cell renal cell carcinoma. Molecular Biology, 51 (1), 73–84.

14. Daniunaite K., Dubikaityte M., Gibas P. et al. (2017). Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum. Mol. Genet., 26 (13), 2451–2461. doi: 10.1093/hmg/ddx138.

15. Tian Y.X., Zhang L., Sun L.G., Li M. (2015). Epigenetic regulation of miR-129-2 leads to overexpression of PDGFRa and FoxP1 in glioma cells. Asian Pac. J. Cancer Prev., 16 (14), 6129–6133. doi: 10.7314/apjcp.2015.16.14.6129.

16. Deng B., Tang X., Wang Y. (2021). Role of microRNA-129 in cancer and non-cancerous diseases. Exp Ther. Med., 22 (3), 918. doi: 10.3892/etm.2021.10350.

17. Torres-Ferreira J., Ramalho-Carvalho J., Gomez A. et al. (2017). MiR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors. Mol. Cancer, 16 (1), 26. doi: 10.1186/s12943-017-0604-0.

18. Heydarzadeh S., Ranjbar M., Karimi F., Seif F., Alivand M.R. (2021). Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell. Biosci., 11 (1), 43. doi: 10.1186/s13578-021-00552-1.

19. Tsai K.W., Wu C.W., Hu L.Y. et al. (2011). Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int. J. Cancer, 129 (11), 2600–2610. doi: 10.1002/ijc.25919.

20. Gebhardt K., Edemir B., Groß E. et al. (2021). BRAF/ EZH2 signaling represses miR-129-5p inhibition of SOX4 thereby modulating BRAFi resistance in melanoma. Cancers (Basel), 13 (10), 2393. doi: 10.3390/cancers13102393.

21. Koens L., Qin Y., Leung W.Y. et al. (2013). MicroRNA profiling of primary cutaneous large B-cell lymphomas. PLoS One, 8 (12), e82471. doi: 10.1371/journal.pone.0082471.

22. Mei M., Wang Y., Wang Q. et al. (2019). CircCDYL serves as a new biomarker in mantle cell lymphoma and promotes cell proliferation. Cancer Manag. Res., 11, 10215–10221. doi: 10.2147/CMAR.S232075.

23. Kim D., Nguyen Q.T., Lee J. et al. (2020). Antiinflammatory roles of glucocorticoids are mediated by Foxp3+ regulatory T cells via a miR-342-dependent mechanism. Immunity, 53 (3), 581–596. doi: 10.1016/j.immuni.2020.07.002.

24. Wang H., Wu J., Meng X. et al. (2011). MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase. Carcinogenesis, 32 (7), 1033–1042. doi: 10.1093/carcin/bgr081.

25. Tai M.C., Kajino T., Nakatochi M. et al. (2015). MiR- 342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer. Carcinogenesis, 36 (12), 1464–1473. doi: 10.1093/carcin/bgv152.

26. Gowda P.S., Wildman B.J., Trotter T.N. et al. (2018). Run x2 suppression by miR-342 and miR-363 inhibits multiple myeloma progression. Mol. Cancer Res., 16 (7), 1138–1148. doi: 10.1158/1541-7786.MCR-17-0606.

27. Weng W., Okugawa Y., Toden S. et al. (2016). FOXM1 and FOXQ1 are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer. Clin. Cancer Res., 22 (19), 4947–4957. doi: 10.1158/1078-0432.CCR-16-0360.

28. Li Z., Wong K.Y., Chan G.C., Chng W.J., Chim C.S. (2018). Epigenetic silencing of EVL/miR-342 in multiple myeloma. Transl. Res., 192, 46–53. doi: 10.1016/j.trsl.2017.11.005.

29. Bai Y., Li Y., Bai J., Zhang Y. (2021). Hsa_ circ_0004674 promotes osteosarcoma doxorubicin resistance by regulating the miR-342-3p/FBN1 axis. J. Orthop. Surg. Res., 16 (1), 510. doi: 10.1186/s13018-021-02631-y.

30. Veys C., Benmoussa A., Contentin R. et al. (2021). Tumor suppressive role of miR-342-5p in human chondrosarcoma cells and 3D organoids. Int. J. Mol. Sci., 22 (11), 5590. doi: 10.3390/ijms22115590.

31. Romero-Cordoba S.L., Rodriguez-Cuevas S., BautistaPina V. et al. (2018). Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci. Rep., 8 (1), 12252. doi: 10.1038/s41598-018-29708-9.

32. Ghafouri-Fard S., Dashti S., Farsi M., Hussen B.M., Taheri M. (2021). A review on the role of oncogenic lncRNA OIP5-AS1 in human malignancies. Biomed. Pharmacother., 137, 111366. doi: 10.1016/j.biopha.2021.111366.

33. Chen Z., Ying J., Shang W. et al. (2021). miR- 342-3p regulates the proliferation and apoptosis of NSCLC cells by targeting BCL-2. Technol. Cancer Res. Treat., 20, 15330338211041193. doi: 10.1177/15330338211041193.

34. Zhou L., Li J., Tang Y., Yang M. (2021). Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med., 19 (1), 8. doi: 10.1186/s12967-020-02648-7.

35. Wang J., Yang Y., Cao Y., Tang X. (2019). miR- 342 inhibits glioma cell proliferation by targeting GPRC5A. Mol. Med. Rep., 20 (1), 252–260. doi: 10.3892/mmr.2019.10242.

36. Young J., Kawaguchi T., Yan L. et al. (2017). Tamoxifen sensitivity-related microRNA-342 is a useful biomarker for breast cancer survival. Oncotarget, 8 (59), 99978–99989. doi: 10.18632/oncotarget.21577.

37. Li X.R., Chu H.J., Lu T. et al. (2014). miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer. FEBS Lett., 588 (17), 3298–3307. doi: 10.1016/j.febslet.2014.07.020.

38. Zhang M.Y., Calin G.A., Yuen K.S., Jin D.Y., Chim C.S. (2020). Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy. Clin. Epigenetics, 12 (1), 150. doi: 10.1186/s13148-020-00926-1.

39. Kersy O., Salmon-Divon M., Shpilberg O., Hershkovitz-Rokah O. (2021). Non-coding RNAs in normal B-cell development and in mantle cell lymphoma: from molecular mechanism to biomarker and therapeutic agent potential. Int. J. Mol. Sci., 22 (17), 9490. doi: 10.3390/ijms22179490.

40. Mo J.S., Park Y.R., Chae S.C. (2019). MicroRNA 196B regulates HOXA5, HOXB6 and GLTP expression levels in colorectal cancer cells. Pathol. Oncol. Res., 25 (3), 953–959. doi: 10.1007/s12253-018-0399-3.

41. Li Z., Huang H., Chen P. et al. (2018). Publisher correction: miR-196b directly targets both HOXA9/ MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat. Commun., 9, 16192. doi: 10.1038/ncomms16192.

42. Hou Y.Y., You J.J., Yang C.M. et al. (2016). Aberrant DNA hypomethylation of miR-196b contributes to migration and invasion of oral cancer. Oncol. Lett., 11 (6), 4013–4021. doi: 10.3892/ol.2016.4491.

43. Bhatia S., Kaul D., Varma N. (2010). Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol. Cell Biochem., 340 (1–2), 97–106. doi: 10.1007/s11010-010-0406-9.

44. Tellez C.S., Juri D.E., Do K. et al. (2016). miR-196b is epigenetically silenced during the premalignant stage of lung carcinogenesis. Cancer Res., 76 (16), 4741– 4751. doi: 10.1158/0008-5472.CAN-15-3367.

45. Kanno S., Nosho K., Ishigami K. et al. (2017). MicroRNA-196b is an independent prognostic biomarker in patients with pancreatic cancer. Carcinogenesis, 38 (4), 425–431. doi: 10.1093/carcin/bgx013.

46. Abe W., Nasu K., Nakada C. et al. (2013). miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum. Rep., 28, 750–761. doi: 10.1093/humrep/des446.

47. Chen C., Zhang Y., Zhang L., Weakley S.M., Yao Q. (2011). MicroRNA-196: critical roles and clinical applications in development and cancer. J. Cell. Mol. Med., 15 (1), 14–23. doi: 10.1111/j.1582-4934.2010.01219.x.

48. Li Y., Li J., Liu Z., Zhang Y. (2020). High expression of miR-196b predicts poor prognosis in patients with ovarian cancer. Onco Targets Ther., 13, 9797–9806. doi: 10.2147/OTT.S254942.

49. Wei H., Zhang J., Tan K. et al. (2015). Benzene-induced aberrant miRNA expression profile in hematopoietic progenitor cells in C57BL/6 mice. Int. J. Mol. Sci., 16 (11), 27058–27071. doi: 10.3390/ijms161126001.

50. Li Z., Huang H., Chen P. et al. (2012). miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat. Com., 3, 688. doi: 10.1038/ncomms1681.

51. Visani M., Marucci G., de Biase D. et al. (2021). miR-196B-5P and miR-200B-3P are differentially expressed in medulloblastomas of adults and children. Diagnostics (Basel), 11 (9), 1633. doi: 10.3390/diagnostics11091633.

52. Cheng A.J., You G.R., Lee C.J. et al. (2021). Systemic investigation identifying salivary miR-196b as a promising biomarker for early detection of head-neck cancer and oral precancer lesions. Diagnostics (Basel), 11 (8), 1411. doi: 10.3390/diagnostics11081411.

53. Shafik R.E., Abd Wahab N., Mokhtar M.M., El Taweel M.A., Ebeid F. (2020). Expression of microRNA-181a and microRNA-196b in egyptian pediatric acute lympho blastic leukemia. Asian Pac. J. Cancer Prev., 21 (11), 3429–3434. doi: 10.31557/APJCP.2020.21.11.3429.

54. Liu Y., Zheng W., Song Y., Ma W., Yin H. (2013). Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis. PLoS One, 8, e68442. doi: 10.1371/journal.pone.0068442.

55. Schotte D., Lange-Turenhout E.A., Stumpel D.J. et al. (2010). Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica, 95 (10), 1675–1682. doi: 10.3324/haematol.2010.023481.

56. Saki N., Abroun S., Soleimani M. et al. (2015). Involvement of microRNA in T-cell differentiation and malignancy. Int. J. Hematol. Oncol. Stem. Cell Res., 9 (1), 33–49.

57. Hurtado López A.M., Chen-Liang T.H., Zurdo M. et al. (2020). Cancer testis antigens in myelodysplastic syndromes revisited: a targeted RNA-seq approach. Oncoimmunology, 9 (1), 1824642. doi: 10.1080/2162402X.2020.1824642.

58. Dombret H., Seymour J.F., Butrym A. et al. (2015). International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood, 126 (3), 291–299. doi: 10.1182/blood-2015-01-621664.

59. Luan C., Yang Z., Chen B. (2015). The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther., 8, 2903–2914. doi: 10.2147/OTT.S92470.

60. Muraoka T., Soh J., Toyooka S. et al. (2013). Impact of aberrant methylation of microRNA-9 family members on non-small cell lung cancers. Mol. Clin. Oncol., 1 (1), 185–189. doi: 10.3892/mco.2012.18.

61. Jia D., Lin W., Tang H. et al. (2019). Integrative analysis of DNA methylation and gene expression to identify key epigenetic genes in glioblastoma. Aging (Albany NY), 11 (15), 5579–5592. doi: 10.18632/aging.102139.

62. Zhang J., Cheng J., Zeng Z. et al. (2015). Comprehensive profiling of novel microRNA-9 targets and a tumor suppressor role of microRNA-9 via targeting IGF2BP1 in hepatocellular carcinoma. Oncotarget., 6 (39), 42040–42052. doi: 10.18632/oncotarget.5969.

63. Zhang J., Jia J., Zhao L. et al. (2016). Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell. Mol. Carcinogen., 55 (5), 732–742. doi: 10.1002/mc.22317.

64. Zhu M., Xu Y., Ge M., Gui Z., Yan F. (2015). Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis. Cancer Sci., 106 (7), 833–839. doi: 10.1111/cas.12689.

65. Vrabec K., Boštjančič E., Koritnik B. et al. (2018). Differential expression of several miRNAs and the host genes AATK and DNM2 in leukocytes of sporadic ALS patients. Front. Mol. Neurosci., 11, 106. doi: 10.3389/fnmol.2018.00106.

66. Roman-Gomez J., Agirre X., Jiménez-Velasco A. et al. (2009). Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J. Clin. Oncol., 27 (8), 1316– 1322. doi: 10.1200/JCO.2008.19.3441.

67. Cui Y., Xue Y., Dong S., Zhang P. (2017). Plasma microRNA-9 as a diagnostic and prognostic biomarker in patients with esophageal squamous cell carcinoma. J. Int. Med. Res., 45 (4), 1310–1317. doi: 10.1177/0300060517709370.

68. Mittal N., Li L., Sheng Y. et al. (2019). A critical role of epigenetic inactivation of miR-9 in EVI1high pediatric AML. Mol. Cancer, 18 (1), 30. doi: 10.1186/s12943-019-0952-z.

69. Rodriguez-Otero P., Román-Gómez J., Vilas-Zornoza A. et al. (2011). Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the miR9 family. Br. J. Haematol., 155 (1), 73–83. doi: 10.1111/j.1365-2141.2011.08812.x.

70. Gao L., Cheng D., Yang J. et al. (2018). Sulforaphane epigenetically demethylates the CpG sites of the miR- 9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J. Nutr. Biochem., 56, 109–115. doi: 10.1016/j.jnutbio.2018.01.015.

71. Emmrich S., Katsman-Kuipers J.E., Henke K. et al. (2014). miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia, 28 (5), 1022–1032. doi: 10.1038/leu.2013.357.

72. Kim B.G., Gao M.Q., Kang S. et al. (2017). Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis., 8 (3), e2646. doi: 10.1038/cddis.2017.73.

73. Liu S., Kumar S.M., Lu H. et al. (2012). MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma. J. Pathol., 226 (1), 61–72. doi: 10.1002/path.2964.

74. Senyuk V., Zhang Y., Liu Y. et al. (2013). Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc. Natl. Acad. Sci. USA, 110 (14), 5594– 5599. doi: 10.1073/pnas.1302645110.

75. Panuzzo C., Signorino E., Calabrese C. et al. (2020). Landscape of tumor suppressor mutations in acute myeloid leukemia. J. Clin. Med., 9 (3), 802. doi: 10.3390/jcm9030802.

76. Zhou L., Fu L., Lv N. et al. (2017). A minicircuitry comprised of microRNA-9 and SIRT1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia. Eur. Rev. Med. Pharmacol. Sci., 21 (4), 786–794.

77. Alhasan L. (2019). MiR-126 modulates angiogenesis in breast cancer by targeting VEGF-A-mRNA. Asian Pac. J. Cancer Prev., 20 (1), 193–197. doi: 10.31557/APJCP.2019.20.1.193.

78. Saito Y., Friedman G.F., Chihara Y. et al. (2009). Epigenetic therapy upregulates the tumour suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun., 379 (3), 726–731. doi: 10.1016/j.bbrc.2008.12.098.

79. Zhao C., Li Y., Zhang M., Yang Y., Chang L. (2015). miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Hum. Cell, 28 (2), 91–99. doi: 10.1007/s13577-014-0105-z.

80. Li F. (2019). Expression and correlation of miR-124 and miR-126 in breast cancer. Oncol. Lett., 17 (6), 5115–5119. doi: 10.3892/ol.2019.10184.

81. Liu R., Zhang Y.S., Zhang S. et al. (2019). MiR-126-3p suppresses the growth, migration and invasion of NSCLC via targeting CCR1. Eur. Rev. Med. Pharmacol. Sci., 23 (2), 679–689. doi: 10.26355/eurrev_201901_16881.

82. Moradi Sarabi M., Zahedi S.A., Pajouhi N. et al. (2018). The effects of dietary polyunsaturated fatty acids on miR-126 promoter DNA methylation status and VEGF protein expression in the colorectal cancer cells. Genes Nutr., 13, 32. doi: 10.1186/s12263-018-0623-5.

83. Miao Y., Lu J., Fan B., Sun L. (2020). MicroRNA- 126-5p inhibits the migration of breast cancer cells by directly targeting CNOT7. Technol. Cancer Res. Treat., 19, 1533033820977545. doi: 10.1177/1533033820977545.

84. Yu J., Fan Q., Li L. (2021). The MCM3AP-AS1/miR- 126/VEGF axis regulates cancer cell invasion and migration in endometrioid carcinoma. World J. Surg. Oncol., 19 (1), 213. doi: 10.1186/s12957-021-02316-0.

85. Chen S.R., Cai W.P., Dai X.J. et al. (2019). Research on miR-126 in glioma targeted regulation of PTEN/ PI3K/Akt and MDM2-p53 pathways. Eur. Rev. Med. Pharmacol. Sci., 23 (8), 3461–3470. doi: 10.26355/eurrev_201904_17711.

86. Chen W., Yu J., Xie R. et al. (2021). Roles of the SNHG7/microRNA-9-5p/DPP4 ceRNA network in the growth and 131I resistance of thyroid carcinoma cells through PI3K/Akt activation. Oncol. Rep., 45 (4), 3. doi: 10.3892/or.2021.7954.

87. Takashima Y., Kawaguchi A., Iwadate Y. et al. (2019). MicroRNA signature constituted of miR-30d, miR- 93, and miR-181b is a promising prognostic marker in primary central nervous system lymphoma. PLoS One, 14 (1), e0210400. doi: 10.1371/journal.pone.0210400.

88. Chen H.H., Huang W.T., Yang L.W., Lin C.W. (2015). The PTEN-AKT-mTOR/RICTOR pathway in nasal natural killer cell lymphoma is activated by miR- 494-3p via PTEN but inhibited by miR-142-3p via RICTOR. Am. J. Pathol., 185 (5), 1487–1499. doi: 10.1016/j.ajpath.2015.01.025.

89. Bong I.P.N., Ng C.C., Baharuddin P., Zakaria Z. (2017). MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy. Genes Genomics, 39 (5), 533–540. doi: 10.1007/s13258-017-0518-7.

90. Andrade T.A., Evangelista A.F., Campos A.H. et al. (2014). A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly. Oncotarget, 5 (23), 11813–11826. doi: 10.18632/oncotarget.

91. Borges N.M., do Vale Elias M., Fook-Alves V.L. et al. (2016). AngiomiRs expression profiling in diffuse large B-Cell lymphoma. Oncotarget, 7 (4), 4806– 4816. doi: 10.18632/oncotarget.6624.

92. Li Z., Lu J., Sun M. et al. (2008). Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Sci. USA, 105 (40), 15535– 15540. doi: 10.1073/pnas.0808266105.

93. Cammarata G., Augugliaro L., Salemi D. et al. (2010). Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am. J. Hematol., 85 (5), 331–339. doi: 10.1002/ajh.21667.

94. Peveling-Oberhag J., Crisman G., Schmidt A. et al. (2012). Dysregulation of global microRNA expression in splenic marginal zone lymphoma and influence of chronic hepatitis C virus infection. Leukemia, 26 (7), 1654–1662. doi: 10.1038/leu.2012.29.

95. Schoof E.M., Lechman E.R., Dick J.E. (2016). Global proteomics dataset of miR-126 overexpression in acute myeloid leukemia. Data Brief, 9, 57–61. doi: 10.1016/j.dib.2016.07.035.

96. Ishihara K., Sasaki D., Tsuruda K. et al. (2012). Impact of miR-155 and miR-126 as novel biomarkers on the assessment of disease progression and prognosis in adult T-cell leukemia. Cancer Epidemiol., 36 (6), 560–565. doi: 10.1016/j.canep.2012.07.002.

97. Kopp K.L., Ralfkiaer U., Nielsen B.S. et al. (2013). Expression of miR-155 and miR-126 in situ in cutaneous T-cell lymphoma. APMIS, 121 (11), 1020–1024. doi: 10.1111/apm.12162.

98. Cao D., Zhao M., Wan C. et al. (2019). Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via miR- 126/Akt-p53-p21 pathways. Int. Urol. Nephrol., 51 (6), 1071–1078. doi: 10.1007/s11255-019-02165-7.

99. Cao D.W., Jiang C.M., Wan C. et al. (2018). Upregulation of miR-126 delays the senescence of human glomerular mesangial cells induced by high glucose via telomere-p53-p21-Rb signaling pathway. Curr. Med. Sci., 38 (5), 758–764. doi: 10.1007/s11596-018-1942-x.

100. Heissig B., Salama Y., Takahashi S., Okumura K., Hattori K. (2021). The multifaceted roles of EGFL7 in cancer and drug resistance. Cancers (Basel), 13 (5), 1014. doi: 10.3390/cancers13051014.

101. Tomasetti M., Gaetani S., Monaco F., Neuzil J., Santarelli L. (2019). Epigenetic regulation of miRNA expression in malignant mesothelioma: miRNAs as biomarkers of early diagnosis and therapy. Front. Oncol., 9, 1293. doi: 10.3389/fonc.2019.01293.

102. Wu C.L., Shan T.D., Han Y. et al. (2021). Long intergenic noncoding RNA 00665 promotes proliferation and inhibits apoptosis in colorectal cancer by regulating miR-126-5p. Aging (Albany NY), 13 (10), 13571– 13584. doi: 10.18632/aging.202874.

103. Chen Q., Chen S., Zhao J., Zhou Y., Xu L. (2021). MicroRNA-126: A new and promising player in lung cancer. Oncol. Lett., 21 (1), 35. doi: 10.3892/ol.2020.12296.

104. Li M., Meng X., Li M. (2020). MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging (Albany NY), 12 (12), 12107–12118. doi: 10.18632/aging.103379.

105. Cui H., Mu Y., Yu L. et al. (2016). Methylation of the miR-126 gene associated with glioma progression. Fam. Cancer, 15 (2), 317–324. doi: 10.1007/s10689-015-9846-4.

106. Li W., Kong X., Huang T. et al. (2020). Bioinformatic analysis and in vitro validation of a five-microRNA signature as a prognostic biomarker of hepatocellular carcinoma. Ann. Transl. Med., 8 (21), 1422. doi: 10.21037/atm-20-2509.

107. Duan J., Lu G., Li Y. et al. (2019). miR-137 functions as a tumor suppressor gene in pituitary adenoma by targeting AKT2. Int. J. Clin. Exp. Pathol., 12 (5), 1557– 1564.

108. Zang Y., Zhu J., Li Q. et al. (2020). miR-137-3p modulates the progression of prostate cancer by regulating the JNK3/EZH2 axis. Onco Targets Ther., 13, 7921– 7932. doi: 10.2147/OTT.S256161.

109. Ding F., Zhang S., Gao S. et al. (2018). MiR-137 functions as a tumor suppressor in pancreatic cancer by targeting MRGBP. J. Cell Biochem., 119 (6), 4799– 4807. doi: 10.1002/jcb.26676.

110. Wang M., Gao H., Qu H. et al. (2018). MiR-137 suppresses tumor growth and metastasis in clear cell renal cell carcinoma. Pharmacol. Reports, 70 (5), 963–971. doi: 10.1016/j.pharep.2018.04.006.

111. Zhang W., Chen J.H., Shan T. et al. (2018). miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation. Lab. Invest., 98 (11), 1397–1407. doi: 10.1038/s41374-018-0092-x.

112. Huang B., Huang M., Li Q. (2018). miR-137 suppresses migration and invasion by targeting EZH2- STAT3 signaling in human hepatocellular carcinoma. Pathol. Res. Pract., 214 (12), 1980–1986. doi: 10.1016/j.prp.2018.08.005.

113. Bi W.P., Xia M., Wang X.J. (2018). miR-137 suppresses proliferation, migration and invasion of colon cancer cell lines by targeting TCF4. Oncol. Lett., 15 (6), 8744–8748. doi: 10.3892/ol.2018.8364.

114. Liu X., Chen L., Tian X.D., Zhang T. (2017). MiR-137 and its target TGFA modulate cell growth and tumorigenesis of non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 21 (3), 511–517.

115. Wang Y., Chen R., Zhou X. et al. (2020). miR-137: a novel therapeutic target for human glioma. Mol. Ther. Nucleic Acids, 21, 614–622. doi: 10.1016/j.omtn.2020.06.028.

116. Huang Y., Zou Y., Zheng R., Ma X. (2019). MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. Eur. J. Haematol., 103 (3), 215–224. doi: 10.1111/ejh.13276.

117. Abdi J., Jian H., Chang H. (2016). Role of micro-RNAs in drug resistance of multiple myeloma. Oncotarget, 7 (37), 60723–60735. doi: 10.18632/oncotarget.11032.

118. Qin Y., Zhang S., Deng S. et al. (2017). Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia, 31 (5), 1123–1135. doi: 10.1038/leu.2016.325.

119. Yang Y., Li F., Saha M.N. et al. (2015). miR-137 and miR-197 induce apoptosis and suppress tumorigenicity by targeting MCL-1 in multiple myeloma. Clin. Cancer Res., 21 (10), 2399–2411. doi: 10.1158/1078-0432.CCR-14-1437.

120. Kozaki K., Imoto I., Mogi S., Omura K., Inazawa J. (2008). Exploration of tumor-suppressive micro RNAs silenced by DNA hypermethylation in oral cancer. Cancer Res., 68 (7), 2094–2105. doi: 10.1158/0008-5472.CAN-07-5194.

121. Chen X., Wang J., Shen H. et al. (2011). Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest. Ophthalmol. Vis. Sci., 52 (3), 1193–1199. doi: 10.1167/iovs.10-5272.

122. Zhu X., Li Y., Shen H. et al. (2013). miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett., 587 (1), 73–81. doi: 10.1016/j.febslet.2012.11.004.

123. Balaguer F., Link A., Lozano J.J. et al. (2010). Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res., 70 (16), 6609–6618. doi: 10.1158/0008-5472.

124. Langevin S.M., Stone R.A., Bunker C.H. et al. (2011). MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer, 117 (7), 1454–1462. doi: 10.1002/cncr.25689.

125. Hannafon B.N., Ding W. (2019). Functional role of miRNAs in the progression of breast ductal carcinoma in situ. Am. J. Pathol., 189 (5), 966–974. doi: 10.1016/j.ajpath.2018.06.025.

126. Rykov S.V., Khodyrev D.S., Pronina I.V. et al. (2013). Novel miRNA genes methylated in lung tumors. Russian Journal of Genetics, 49 (7), 896–901. doi: 10.7868/s0016675813070114.

127. Bondada M.S., Yao Y., Nair V. (2019). Multifunctional miR-155 pathway in avian oncogenic virus-induced neoplastic diseases. Noncoding RNA, 5 (1), 24. doi: 10.3390/ncrna5010024.

128. Holubekova V., Mendelova A., Jasek K. et al. (2017). Epigenetic regulation by DNA methylation and miRNA molecules in cancer. Future Oncol., 13 (25), 2217–2222. doi: 10.2217/fon-2017-0363.

129. Huang Q., Shen Y.J., Hsueh C.Y. et al. (2021). miR- 17-5p drives G2/M-phase accumulation by directly targeting CCNG2 and is related to recurrence of head and neck squamous cell carcinoma. BMC Cancer, 21 (1), 1074. doi: 10.1186/s12885-021-08812-6.

130. Larrabeiti-Etxebarria A., Lopez-Santillan M., SantosZorrozua B., Lopez-Lopez E., Garcia-Orad A. (2019). Systematic review of the potential of microRNAs in diffuse large B cell lymphoma. Cancers (Basel), 11 (2), 144. doi: 10.3390/cancers11020144.

131. Lawrie C., Soneji S., Marafioti T. et al. (2007). MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer, 121, 1156–1161. doi: 10.1002/ijc.22800.

132. Lawrie C.H., Gal S., Dunlop H.M. et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol., 141 (5), 672–675. doi: 10.1111/j.1365-2141.2008.07077.x.

133. Cui B., Chen L., Zhang S. et al. (2014). MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood, 124 (4), 546–554. doi: 10.1182/blood-2014-03-559690.

134. Mraz M., Chen L., Rassenti L.Z. et al. (2014). miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood, 124 (1), 84–95. doi: 10.1182/blood-2013-09-527234.

135. Klein U., Lia M., Crespo M. et al. (2010). The DLEU2/ miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17 (1), 28–40. doi: 10.1016/j.ccr.2009.11.019.

136. Di Lisio L., Gómez-López G., Sánchez-Beato M. et al. (2010). Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia, 24 (7), 1335–1342. doi: 10.1038/leu.2010.91.

137. Zhao J.J., Lin J., Lwin T. et al. (2010). MicroRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood, 115 (13), 2630–2639. doi: 10.1182/blood-2009-09-243147.

138. Mraz M., Malinova K., Kotaskova J. et al. (2009). miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia, 23 (6), 1159–1163. doi: 10.1038/leu.2008.377.


Review

For citations:


Voropaeva E.N., Berezina O.V., Churkina M.I., Pospelova T.I., Lyzlova A.A., Maksimov V.N. Aberrant expression and methylation of individual microRNAs genes in lymphoproliferative diseases: a literature review. Journal of Siberian Medical Sciences. 2021;(4):108-133. https://doi.org/10.31549/2542-1174-2021-4-108-133

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)