The expression profile of a number of miRNAs in the placenta in timely and premature birth
https://doi.org/10.31549/2542-1174-2022-6-1-22-37
Abstract
Introduction. Comparative analysis of the expression levels of a number of microRNAs (miRNAs) in placentas obtained during timely and spontaneous preterm birth (PB) will make it possible to identify those miRNAs that are involved in the genesis of spontaneous PB. MiRNAs characterized by aberrant expression in placental tissues may be promising biomarkers in the blood of pregnant women for assessing the risk of spontaneous PB.
Aim. Comparative analysis of expression levels of a number of microRNAs in placental tissue in women in timely and premature birth.
Materials and Methods. We performed an analysis of the expression level of a number of miRNAs in placental tissue from 30 patients with PB and perinatal losses (group 1), from 30 patients with PB without perinatal losses (group 2), from 30 maternity women with timely delivery (group 3). The expression levels of the following miRNAs were studied: 31, 100, 146, 150, 20a, 204, 221, 223, 1246, 128, let7a, 126, 451, 92a, 23a, 21, 125b, 26a, 29b, 191, and U6. For this, the material was deparaffinated step by step using mineral oil, then the RNA extraction, reverse transcription reaction, and real-time polymerase chain reaction were carried out.
Results. It was found that in PB a statistically significant increase in the expression levels of miRNA-125b, miRNA-29b is observed in placental samples, and a decrease in the expression level of miRNA-451 in comparison with timely delivery placentas. In the PB with perinatal losses, a statistically significant decrease in the expression level of miRNA-150 was registered, and in the absence of perinatal losses, an increase in the expression level of miRNA-223 and miRNA-31 compared with placentas in timely delivery was revealed. In addition, in PB with perinatal losses compared to PB without perinatal losses, a statistically significantly lower level of expression of miRNA-221 and miRNA-223 is noted.
Conclusion Aberrant expression levels of miRNA-125b, miRNA-29b, and miRNA-451 in the placentas of patients with PB indicate their involvement in the pathogenesis of the latter, apparently due to dysregulation of angiogenesis, apoptosis, trophoblast invasion and glucose metabolism.
About the Authors
E. L. KazachkovRussian Federation
Dr. Sci. (Med.), Professor, Head, Department of Pathological Anatomy and Forensic Medicine named after prof. V.L. Kovalenko
64, Vorovsky str., Chelyabinsk, 454092, Russia
Yu. A. Semenov
Russian Federation
Cand. Sci. (Med.), Associate Professor, Department of Obstetrics and Gynecology
64, Vorovsky str., Chelyabinsk, 454092, Russia
Yu. A. Veryaskina
Russian Federation
Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Genetics
Novosibirsk
E. A. Kazachkova
Russian Federation
Dr. Sci. (Med.), Professor, Department of Obstetrics and Gynecology
64, Vorovsky str., Chelyabinsk, 454092, Russia
A. V. Chizhovskaya
Russian Federation
Graduate, Department of Pathological Anatomy and Forensic Medicine named after prof. V.L. Kovalenko
64, Vorovsky str., Chelyabinsk, 454092, Russia
References
1. Shchegolev A.I. Current morphological classification of damages to the placenta. Obstetrics and Gynecology. 2016;4:16–23. doi: 10.18565/aig.2016.4.16-23. (In Russ.)
2. Robbins J.R., Bakardjiev A.I. Pathogens and the placental fortress // Curr. Opin. Microbiol. 2012;15(1):36–43. doi: 10.1016/j.mib.2011.11.006.
3. Shchegolev A.I., Serov V.N. Clinical significance of placental lesions. Obstetrics and Gynecology. 2019;3:54–62. doi: 10.18565/aig.2019.3.54-62. (In Russ.)
4. Nizyaeva N.V. Histological criteria of inflammatory diseases of placenta membranes and umbilical cord. International Journal of Applied and Basic Research. 2018;3:180–188. doi: 10.17513/mjfi.12172. (In Russ.)
5. Fromm B., Domanska D., Høye E. et al. MirGeneDB 2.0: the metazoan microRNA complement // Nucleic Acids Res. 2020;8:48(D1):D132–D141. doi: 10.1093/nar/gkz885.
6. Dmitirieva M.L., Tikhonovskaya O.A,. Romanova A.A., Logvinov S.V. MicroRNAs and premature ovarian insufficiency. Obstetrics and Gynecology. 2020;1:40–46. doi: 10.18565/aig.2020.1.40-46. (In Russ.)
7. Ardekani A.M., Naeini M.M. The role of microRNAs in human diseases // Avicenna J. Med. Biotechnol. 2010;2(4):161–179.
8. Ali A., Hadlich F., Abbas M.W. et al. MicroRNAmRNA networks in pregnancy complications: a comprehensive downstream analysis of potential biomarkers // Int. J. Mol. Sci. 2021;22(5):2313. doi: 10.3390/ijms22052313.
9. Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas // Am. J. Physiol. Endocrinol. Metab. 2013;304(8):E836–E843. doi: 10.1152/ajpendo.00660.2012.
10. Donker R.B., Mouillet J.F., Chu T. et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes // Mol. Hum. Reprod. 2012;18(8):417–424. doi: 10.1093/molehr/gas013.
11. Gusar V.A., Timofeeva A.V., Kan N.E. et al. The expression profile of placental microRNAs as regulators of oxidative stress in fetal growth restriction. Obstetrics and Gynecology. 2019;1:74–80. doi: 10.18565/aig.2019.1.74-80. (In Russ.)
12. Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Cardiovascular and cerebrovascular disease associated microRNAs are dysregulated in placental tissues affected with gestational hypertension, preeclampsia and intrauterine growth restriction // PLoS One. 2015;10(9):e0138383. doi: 10.1371/journal.pone.0138383.
13. Nizyaeva N.V., Kan N.E., Tyutyunnik V.L. et al. MicroRNAs as an important precursors of diagnostic obstetric pathology. Annals of the Russian Academy of Medical Sciences. 2015;70(4):484–492. doi: 10.15690/vramn.v70.i4.1416. (In Russ.)
14. Histopathology Specimens. Clinical, Pathological and Laboratory Aspects / ed. by D.C. Allen, R.I. Cameron. Springer, 2013.
15. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method // Methods. 2001;25(4):402. doi: 10.1006/meth.2001.1262.
16. Nizyaeva N.V. (2021). Morphological and molecular genetic characteristics of placental lesions and their role in the pathogenesis of preeclampsia. Dr. Sci. (Med.) thesis. Moscow. 48 p. (In Russ.)
17. Hosseini M.K., Gunel T., Gumusoglu E., Benian A., Aydini K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss // Mol. Med. Rep. 2018;17(4):4941–4952. doi: 10.3892/mmr.2018.8530.
18. Xu P., Zhao Y., Liu M. et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy // Hypertension. 2014;63(6):1276–1284. doi: 10.1161/HYPERTENSIONAHA.113.02647.
19. Рileczki V., Cojocneanu-Petric R., Maralani M., Neagoe I.B., Sandulescu R. MicroRNAs as regulators of apoptosis mechanisms in cancer // Clujul. Med. 2016;89(1):50–55. doi: 10.15386/cjmed-512.
20. Landskroner-Eiger S., Moneke I., Sessa W.C. miRNAs as modulators of angiogenesis // Cold Spring Harb. Perspect. Med. 2013;3(2):a006643. doi: 10.1101/cshperspect.a006643.
21. Lenkala D., LaCroix B., Gamazon E.R. et al. The impact of microRNA expression on cellular proliferation // Hum. Genet. 2014;133(7):931–938. doi: 10.1007/s00439-014-1434-4.
22. Barton J.R., Woelkers D.A., Newman R.B. et al. Placental growth factor predicts time to delivery in women with signs or symptoms of early preterm preeclampsia: a prospective multicenter study // Am. J. Obstet. Gynecol. 2020;222(3):259.e1–259.e11. doi: 10.1016/j.ajog.2019.09.003.
23. Alpini G., Glaser S.S., Zhang J.P.et al. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer // J. Hepatol. 2011;55(6):1339–1345. doi: 10.1016/j.jhep.2011.04.015.
24. Chao C.T., Yeh H.Y., Yuan T.H. et al. MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications // J. Cell Mol. Med. 2019;23(9):5884–5894. doi: 10.1111/jcmm.14535.
25. Chen D.B., Zheng J. Regulation of placental angiogenesis // Microcirculation. 2014;21(1):15–25. doi: 10.1111/micc.12093.
26. Ray A., Ray B.K. Suppression of vascular endothelial growth factor expression in breast cancer cells by microRNA-125b-mediated attenuation of serum amyloid A activating factor-1 level // Oncoscience. 2019;6(5-6):337–348. doi: 10.18632/oncoscience.483.
27. Zhou S., Zhang P., Liang P., Huang X. The expression of miRNA-125b regulates angiogenesis during the recovery of heat-denatured HUVECs // Burns. 2015;41(4):803–811. doi:10.1016/j.burns.2014.10.012
28. He J., Jing Y., Li W. et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis //PLoS One. 2013;8(2):e56647. doi: 10.1371/journal.pone.0056647.
29. Yang W., Wang A., Zhao C. et al. miR-125b enhances IL-8 production in early-onset severe preeclampsia by targeting sphingosine-1-phosphate lyase 1 // PLoS One. 2016;11(12):e0166940. doi: 10.1371/journal.pone.0166940.
30. Li Q., Han Y., Xu P. et al. Elevated microRNA-125b inhibits cytotrophoblast invasion and impairs endothelial cell function in preeclampsia // Cell Death Discov. 2020;13(6):35. doi: 10.1038/s41420-020-0269-0.
31. Kalhan S., Rossi K., Gruca L., Burkett E., O’Brien A. Glucose turnover and gluconeogenesis in human pregnancy // J. Clin. Invest. 1997;100(7):1775–1781. doi: 10.1172/JCI119704.
32. Ermini L., Nuzzo A.M., Ietta F. et al. Placental glucose transporters and response to bisphenol A in pregnancies from of normal and overweight mo thers // Int. J. Mol. Sci. 2021;22(12):6625. doi: 10.3390/ijms22126625.
33. Huang Y.F., Zhang Y., Liu C.X., Huang J., Ding G.H. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2 // Eur. Rev. Med. Pharmacol. Sci. 2016;20(19):4055–4062.
34. Zhang G., Zhou S., Yang Q., Liu F. MicroRNA-125b reduces glucose uptake in papillary thyroid carcinoma cells // Oncol. Lett. 2020;20(3):2806–2810. doi: 10.3892/ol.2020.11832.
35. Illsley N.P., Baumann M.U. Human placental glucose transport in fetoplacental growth and metabolism // Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866(2):165359. doi: 10.1016/j.bbadis.2018.12.010.
36. Lüscher B.P., Marini C., Joerger-Messerli M.S. et al. Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia // Placenta. 2017;55:94–99. doi: 10.1016/j.placenta.2017.04.023.
37. Tang W., Guo J., Gu R. et al. MicroRNA-29b-3p inhibits cell proliferation and angiogenesis by targeting VEGFA and PDGFB in retinal microvascular endothelial cells // Mol. Vis. 2020;26:64–75.
38. Teng Y., Zhang Y., Qu K. et al. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3 // Oncotarget. 2015;6(38):40799–40814. doi: 10.18632/oncotarget.5695.
39. Dini S., Zakeri M., Ebrahimpour S., Dehghanian T., Esmaeli A. Quercetin-conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats // Sci. Rep. 2021;11(1):8618. doi: 10.1038/s41598-021-87687-w.
40. Yuan G., Zhao Y., Wu D., Gao Ch. Mir-150 up-regulates Glut1 and increases glycolysis in osteosarcoma cells // Asian Pac. J. Cancer Prev. 2017;18(4):1127–1131. doi: 10.22034/APJCP.2017.18.4.1127.
41. Guo H., Nan Y., Zhen Y. et al. miRNA-451 inhi bits glioma cell proliferation and invasion by downregulating glucose transporter 1 // Tumour Biol. 2016;37(10):13751–13761. doi: 10.1007/s13277-016-5219-3.
42. Langdown M.L., Sugden M.C. Enhanced placental GLUT1 and GLUT3 expression in dexamethasoneinduced fetal growth retardation // Mol. Cell Endocrinol. 2001;185(1–2):109–117. doi: 10.1016/s0303-7207(01)00629-3.
43. Sanders A.P., Burris H.H., Just A.C. et al. microRNA expression in the cervix during pregnancy is associated with length of gestation // Epigenetics. 2015;10(3):221–228. doi: 10.1080/15592294.2015.1006498.
44. Kim S., Lee K.S., Choi S. et al. NF-κB-responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitricoxide synthase // J. Biol. Chem. 2018;293(49):18989–19000. doi: 10.1074/jbc.RA118.005197.
45. Hu B., Xu G., Tang J. et al. microRNA221 is involved in human placental development by targeting DDIT4 // Cell. Physiol. Biochem. 2019;52(2):254–262. doi: 10.33594/000000019.
46. Ji L.X., Liu J. MicroRNA-221/222 participates in the pathogenesis of intrahepatic cholestasis of pregnancy via promoting the apoptosis of human placental trophoblast HTR-8 cells // Zhonghua Gan Zang Bing Za Zhi. 2018;26(8):607–611. doi: 10.3760/cma.j.issn.1007-3418.2018.08.009. (In Chinese)
47. Zhao H., Tao S. MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1 // Biochem. Biophys. Res. Commun. 2019;520(1):218–224. doi: 10.1016/j.bbrc.2019.09.139.
Review
For citations:
Kazachkov E.L., Semenov Yu.A., Veryaskina Yu.A., Kazachkova E.A., Chizhovskaya A.V. The expression profile of a number of miRNAs in the placenta in timely and premature birth. Journal of Siberian Medical Sciences. 2022;(1):22-37. https://doi.org/10.31549/2542-1174-2022-6-1-22-37