Current research on the role of the blood-brain barrier in the central nervous system lymphomas development
https://doi.org/10.31549/2542-1174-2022-6-2-131-147
Abstract
The review summarizes modern researches about the role of the blood-brain barrier (BBB) in the development of lymphomas of the central nervous system (CNS). Currently, it has been established that the BBB is a highly active structure. On the one hand, it protects the brain tissue from chemical, physical and other infl uences, and on the other hand, it is uniquely adapted for transmitting signals between the CNS and other parts of the body. BBB cells respond to signals from the CNS or blood compartments that can stimulate changes in their barrier, transport, and secretory functions. The immune privilege of the CNS is not absolute. Normally, extravasation of lymphocytes through the BBB is crucial for immune surveillance in nervous tissue, although it is tightly regulated.
Damage to the BBB is one of the central links in the pathogenesis of many diseases of the nervous system, and the nonspecifi c permeability of the BBB can increase signifi cantly in various somatic pathologies. In general, immunological dysfunction and infl ammation are the main factors in the violation of the BBB integrity. The mechanisms of metastasis of malignant lymphomas in the CNS remain poorly understood, although it is already clear that their implementation requires interactions between circulating tumor cells and BBB components, while some cytokines can act as attractants for metastatic cells, and the process of tumor development includes several stages from extravasation to local proliferation and activation of neoangiogenesis.
About the Authors
E. V. VoropaevaRussian Federation
Elena N. Voropaeva – Dr. Sci. (Med.), Senior Researcher, Laboratory of Molecular Genetic Research of Internal Diseases
Novosibirsk
V. S. Karpova
Russian Federation
Viktoriya S. Karpova – Hematologis
2а, Vladimirovskiy spusk, Novosibirsk, 630003
T. I. Pospelova
Russian Federation
Tatyana I. Pospelova – Dr. Sci. (Med.), Professor, Head of the Department of Therapy, Hematology and Transfusiology, Vice-Rector for Research
Novosibirsk
V. N. Maksimov
Russian Federation
Vladimir N. Maksimov – Dr. Sci. (Med.), Professor, Head of the Laboratory of Molecular Genetic Research of Internal Diseases
Novosibirsk
E. V. Vorontsova
Russian Federation
Ekaterina V. Vorontsova – Head, Hematology Department with a Block of Aseptic Wards
Novosibirsk
References
1. Al-Hamadani M., Haabermann T.M., Cerhan J.R. et al. Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: a longitudinal analysis of the National Cancer Data Base from 1998 to 2011. Am. J. Hematol. 2015;90(9):790–795. DOI: 10.1002/ajh.24086.
2. Teras L.R., DeSantis C.E., Cerhan J.R. et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer. J. Clin. 2016;66(6):443–459. DOI: 10.3322/caac.21357.
3. Russian clinical guidelines for the diagnosis and treatment of lymphoproliferative diseases. 2018. URL: https://rusoncohem.ru/klinrec/klin-rekomendatsii-limfoproliferativnykh-zabolevaniy (accessed 23.12.2021).
4. Ollila T.A., Olszewski A.J. Extranodal diff use large B cell lymphoma: molecular features, prognosis, and risk of central nervous system recurrence. Curr. Treat. Options Oncol. 2018;19(8):38. DOI: 10.1007/s11864018-0555-8.
5. Kridel R., Dietrich P.Y. Prevention of CNS relapse in diff use large B-cell lymphoma. Lancet Oncol. 2011;12(13):1258–1266. DOI: 10.1016/S14702045(11)70140-1.
6. Grimm K.E., O’Malley D.P. Aggressive B cell lymphomas in the 2017 revised WHO classifi cation of tumors of hematopoietic and lymphoid tissues. Ann. Diagn. Pathol. 2019;38:6–10. DOI: 10.1016/j.anndiagpath.2018.09.014.
7. Fox C.P., Phillips E.H., Smith J. et al. Guidelines for the diagnosis and management of primary central nervous system diff use large B-cell lymphoma. Br. J. Haematol. 2019;184(3):348–363. DOI: 10.1111/bjh.15661.
8. DeRosa P., Cappuzzo J.M., Sherman J.H. Isolated recurrence of secondary CNS lymphoma: case report and literature review. J. Neurol. Surg. Rep. 2014;75(01):e154–e159. DOI: 10.1055/s-00341378152.
9. Fox C.P. Refi ning CNS relapse risk in DLBCL: as easy as ABC. Blood. 2019;133(9):886–888. DOI: 10.1182/blood-2019-01-897595.
10. Schmitz N., Zeynalova S., Nickelsen M. et al. CNS International Prognostic Index: a risk model for CNS relapse in patients with diff use large B-cell lymphoma treated with R-CHOP. J. Clin. Oncol. 2016;34(26):3150–3156. DOI: 10.1200/JCO.2015.65.6520.
11. Peñalver F.J., Sancho J.M., de la Fuente A. et al. Guidelines for diagnosis, prevention and management of central nervous system involvement in diff use large B-cell lymphoma patients by the Spanish Lymphoma Group (GELTAMO). Haematologica. 2017;102(2):235–245. DOI: 10.3324/haematol.2016.149120.
12. Tai W.M., Chung J., Tang P.L. et al. Central nervous system (CNS) relapse in diff use large B cell lymphoma (DLBCL): pre- and post-rituximab. Ann. Hematol. 2011;90(7):809–818. DOI: 10.1007/s00277-010-1150-7.
13. Thieblemont C., Bernard S., Meignan M., Molina T. Optimizing initial therapy in DLBCL. Best Pract. Res. Clin. Haematol. 2018;31(3):199–208. DOI: 10.1016/j. beha.2018.08.001.
14. Boehme V., Schmitz N., Zeynalova S., Loeff er M., Preundschuh M. CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: an analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood. 2009;113(17):3896–3902. DOI: 10.1182/blood-2008-10-182253.
15. Zahid M.F., Khan N., Hashmi S.K., Kizilbash S.H., Barta S.K. Central nervous system prophylaxis in diff use large B-cell lymphoma. Eur. J. Haematol. 2016;97(2):108–120. DOI: 10.1111/ejh.12763.
16. Hall K.H., Hall-Panjic E., Valla K., Flowers C.R., Cohen J.B. How to decide which DLBCL patients should receive CNS prophylaxis. Oncology (Williston Park). 2018;32(6):303–309.
17. Swerdlow S.H., Campo E., Pileri S.A. et al. The 2016 revision of the World Health Organization classifi cation of lymphoid neoplasms. Blood. 2016;127(20):2375– 2390. DOI: 10.1182/blood-2016-01-643569.
18. El-Galaly T.C., Villa D., Michaelsen T.Y. et al. The number of extranodal sites assessed by PET/CT scan is a powerful predictor of CNS relapse for patients with diff use large B-cell lymphoma: An international multicenter study of 1532 patients treated with chemoimmunotherapy. Eur. J. Cancer. 2017;75:195–203. DOI: 10.1016/j.ejca.2016.12.029.
19. Angeli E., Nguyen T.T., Janin A., Bousquet G. How to make anticancer drugs cross the blood–brain barrier to treat brain metastases. Int. J. Mol. Sci. 2020;21(1):22. DOI: 10.3390/ijms21010022.
20. Fortress: The blood brain barrier. URL: https://medicalxpress.com/news/2017-09-science-brain-fortress-like-barrier.html?deviceType=mobile (accessed 28.12.2021).
21. Gorbachev M.I., Bragina N.V. Blood-brain barrier from the point of view of anesthesiologist. Review. Part 1. Annals of Critical Care. 2020;3:35–45. DOI: 10.21320/1818-474X-2020-3-35-45.
22. Erickson М.A., Banks W.A. Neuroimmune axes of the blood–brain barriers and blood–brain interfaces: bases for physiological, regulation, disease states, and pharmacological interventions. Pharmacol. Rev. 2018;70(2):278–314. DOI: 10.1124/pr.117.014647.
23. Sushkov S.A., Lebedeva E.I., Myadelets O.D. Pericytes as a potential source of neoangiogenesis. Novosti Khirurgii. 2019;27(2):212–221. DOI: 10.18484/23050047.2019.2.212.
24. Reed M.J., Vernon R.B., Damodarasamy M. et al. Microvasculature of the mouse cerebral cortex exhibits increased accumulation and synthesis of hyaluronan with aging. J. Gerontol. Series A. 2017;72(6):740–746. DOI: 10.1093/gerona/glw213.
25. Kondratyev A.N., Tsentsiper L.M. Glymphatic system of the brain: structure and practical signifi cance. Russian Journal of Anаеsthesiology and Reanimatology. 2019;6:72–80. DOI: 10.17116/anaesthesiology201906172.
26. Shabab T., Khanabdali R., Moghadamtousi S.Z., Kadir H.A., Mohan G. Neuroinfl ammation pathways: a general review. Int. J. Neurosci. 2017;127(7):624–633. DOI: 10.1080/00207454.2016.1212854.
27. Cherry J.D., Olschowka J.A., O’Banion M.K. Neuroinfl ammation and M2 microglia: the good, the bad, and the infl amed. J. Neuroinfl ammation. 2014;11:98. DOI: 10.1186/1742-2094-11-98.
28. Belykh E., Shaff er K.V., Lin C. et al. Blood-brain barrier, blood-brain tumor barrier, and fl uorescenceguided neurosurgical oncology: delivering optical labels to brain tumors. Front. Oncol. 2020;10:739. DOI: 10.3389/fonc.2020.00739.
29. Georgieva J.V., Hoekstra D., Zuhorn I.S. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics. 2014;6(4):557–583. DOI: 10.3390/pharmaceutics6040557.
30. Uspenskaya Yu.A., Morgun A.V., Osipova E.D., Antonova S.K., Salmina A.B. Brain ependymocytes in neurogenesis and maintaining integrity of blood-cerebrospinal fl uid barrier. Fundamental and Clinical Medicine. 2019;4(3):83–94. DOI: 10.23946/2500-0764-2019-43-83-9.
31. Saunders N.R., Dziegielewska K.M., Møllgård K., Habgood M.D. Markers for blood–brain barrier integrity: how appropriate is Evans blue in the twenty-fi rst century and what are the alternatives. Front. Neurosci. 2015;9:385. DOI: 10.3389/fnins.2015.00385.
32. Filiano A.J., Gadani S.P., Kipnis J. How and why do T cells and their derived cytokines aff ect the injured and healthy brain. Nat. Rev. Neurosci. 2017;18(6):375– 384. DOI: 10.1038/nrn.2017.39.
33. Schulte-Mecklenbeck A., Bhatia U., Schneider-Hohendorf T. et al. Analysis of lymphocyte extravasation using an in vitro model of the human blood-brain barrier. J. Vis. Exp. 2017;122:e55390. DOI: 10.3791/55390.
34. Greenwood J., Wang Y., Calder V.L. Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology. 1995;86(3):408–415. PMCID: PMC1383944.
35. McKim D.B., Weber M.D., Niraula A. et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol. Psychiatry. 2018;23(6):1421–1431. DOI: 10.1038/ mp.2017.64.
36. Wilhelm I., Molnár J., Fazakas C., Hasko J., Krizbai I.A. Role of the blood-brain barrier in the formation of brain metastases. Int. J. Mol. Sci. 2013;14:1383–1411. DOI: 10.3390/ijms14011383.
37. Yu W., Si M., Li L. et al. Вiomarkers refl ecting the destruction of the blood-brain barrier are valuable in predicting the risk of lymphomas with central nervous system involvement. Onco Targets Ther. 2019;12:9505–9512. DOI: 10.2147/OTT.S222432.
Review
For citations:
Voropaeva E.V., Karpova V.S., Pospelova T.I., Maksimov V.N., Vorontsova E.V. Current research on the role of the blood-brain barrier in the central nervous system lymphomas development. Journal of Siberian Medical Sciences. 2022;(2):131-147. https://doi.org/10.31549/2542-1174-2022-6-2-131-147