The occurrence of ТР53 gene mutations and loss of heterozygosity in diffuse large B-cell lymphoma in the dependence of rs1042522 genotype
https://doi.org/10.31549/2542-1174-2022-6-3-72-89
Abstract
I n t r o d u c t i o n . Recent studies have shown that in tumor cells of various types of malignant neoplasms, in carriers of the heterozygous variant rs1042522 of the TP53 gene, most of the point mutations are detected in the G allele of the gene, while the C allele was lacking as a result of loss heterozygosity (LH). At the same time, the association of the G allele of the rs1042522 gene with a decrease in the effectiveness of therapy in patients with malignant neoplasms was described. Previously, the study of rs1042522 on samples of patients with lymphomas was carried out only in healthy tissues; in the tumor tissue of diffuse large B-cell lymphoma (DLBCL), this single nucleotide polymorphism was not studied. Given the propensity of B-lymphocytes to p53-mediated apoptosis, the study of the rs1042522 genotype in combination with somatic aberrations, such as mutations or LH of the TP53 gene in the tumor tissue of DLBCL is of particular interest.
A i m . To describe the frequency of occurrence of somatic mutations and LH in the TP53 gene depending on the rs1042522 genotype in the tumor tissue of patients with DLBCL.
M a t e r i a l s a n d m e t h o d s . The study included 150 patients with a diagnosis of DLBCL confirmed histologically and immunohistochemically. DNA was isolated from paraffinized blocks of tumor lymph nodes and extranodal lesions by phenol-chloroform extraction using guanidine. Genotyping according to rs1042522 and detection of cases of loss of heterozygosity in the TР53 gene was carried out by PCR with the analysis of polymorphism of the lengths of restriction fragments. Confirmation of LH and the search for mutations in the TP53 gene were carried out by direct Sanger sequencing.
R e s u l t s . In the study group, almost a third (28.6%) of patients with DLBCL at the stage of tumor diagnosis had genetic anomalies in the structure of the TР53 gene (LH and mutations). The combination of LH and the mutant status of this gene in patients with heterozygous Arg/Pro genotype of the tested polymorphism in the tumor tissue was not revealed. At the same time, it was noted that in a subgroup of 73 samples with a homozygous G/G genotype, mutations were detected in 20 cases (27.3%). In the subgroups of C/C homozygous and G/C heterozygous samples, the mutation was detected only in 1/13 (7.7%) and 4/64 (6.25%) cases, respectively. The significance of differences in the frequency of detection of mutations between G/G homozygous patients and other patients with DLBCL (genotypes C/C+G/C) was p < 0.001, and the probability of detecting mutations in the TР53 gene in carriers of the G/G genotype was more than 5.4 times higher than that in carriers of other genotypes (odds ratio – 5.4, 95% confidence interval – 1.9; 15.4).
C o n c l u s i o n . In order to increase the probability of identifying of combined detection of LH and mutations in TP53 with different rs1042522 genotypes, it is possible to increase the number of lymphoma samples, as well as the use of high-performance sequencing and methods for searching for allelic imbalance, which will allow registering the loss of heterozygosity in homozygous samples as well. A possible direction for further research may also be the analysis of the clinical significance of the combined detection of the homozygous genotype G/G of the marker and LH or/and somatic mutations in the TP53 gene in the tumor tissue of patients with lymphoma.
Keywords
About the Authors
E. N. VoropaevaRussian Federation
Elena N. Voropaeva – Dr. Sci. (Med.), Senior Researcher, Laboratory of Molecular Genetic Studies of Therapeutic Diseases, Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics.
Novosibirsk.
M. I. Churkina
Russian Federation
Maria I. Churkina – Postgraduate Student, Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical Universty.
Novosibirsk.
K. A. Bashirzade
Russian Federation
Ksenia A. Bashirzade – Resident, Novosibirsk State Medical University.
Novosibirsk.
T. I. Pospelova
Russian Federation
Tatyana I. Pospelova – Dr. Sci. (Med.), Professor, Head of the Department of Therapy, Hematology and Transfusiology, Vice-Rector for Research, Novosibirsk State Medical University.
Novosibirsk.
Т. A. Ageeva
Russian Federation
Tatyana A. Ageeva – Dr. Sci. (Med.), Professor, Department of Pathological Anatomy, Novosibirsk State Medical University.
Novosibirsk.
V. N. Maksimov
Russian Federation
Vladimir N. Maksimov – Dr. Sci. (Med.), Professor, Head, Laboratory of Molecular Genetic Studies of Therapeutic Diseases, Research Institute of Therapy and Preventive Medicine, Branch of the Federal Research Center Institute of Cytology and Genetics.
Novosibirsk.
References
1. Kwai H.Y., Hyewon L., Cheolwon S. Lymphoma epidemiology in Korea and the real clinical field including the Consortium for Improving Survival of Lymphoma (CISL) trial. Int. J. Hematol. 2018;107:395–404. DOI: 10.1007/s12185-018-2403-9.
2. Li M., Liu Y., Wang Y. et al. Anaplastic variant of diffuse large B-cell lymphoma displays intricate genetic alterations and distinct biological features. Am. J. Surg. Pathol. 2017;10:1322–1332. DOI: 10.1097/PAS.0000000000000836.
3. Younes A., Thieblemont C., Morschhauser F. et al. Combinationofibrutinibwithrituximab,cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2014;15(9):1019–1026. DOI: 10.1016/S1470-2045(14)70311-0.
4. Zlamalikova L., Moulis M., Ravcukova B. et al. Complex analysis of the TP53 tumor suppressor in mantle cell and diffuse large B-cell lymphomas. Oncol. Rep. 2017;38(4):2535–2542. DOI: 10.3892/or.2017.5891.
5. Voropaeva E.N., Pospelova T.I., Voevoda M.I. et al. Clinical aspects of disorders in the TP53 gene in diffuse large B-cell lymphoma. Bulletin of Hematology. 2019;15(3):12–13. (In Russ).
6. Zenz T., Kreuz M., Fuge M. et al. TP53 mutation and survival in aggressive B-cell lymphoma. Int. J. Cancer. 2017;141(7):1381–1388. DOI: 10.1002/ijc.30838.
7. Baugh E.H., Ke H., Levine A.J., Bonneau R.A., Chan C.S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25:154–160. DOI: 10.1038/cdd.2017.180.
8. Azzam G.A., Frank A.K., Hollstein M., Murphy M.E. Tissue-specific apoptotic effects of the p53 codon 72 polymorphism in a mouse model. Cell Cycle. 2011;10(9):1352–1355. DOI: 10.4161/cc.10.9.15344.
9. Marin M.C., Jost C.A., Brooks L.A. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 2000;25:47–54. DOI: 10.1038/75586.
10. Pospelova T.I., Voevoda M.I., Voropaeva E.P. et al. Value of constitutional polymorphisms gene P53 at patients with Non-Hodgkin’s lymphomas. Bulletin of Siberian Medicine. 2008;7(S3):56–63. (In Russ.)
11. Dumont P., Leu J., Della Pietra A., George D.L., Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 2003;33(3):357–365. DOI: 10.1038/ng1093.
12. Schneider-Stock R., Mawrin C., Motsch C. et al. Retention of the arginine allele in codon 72 of the p53 gene correlates with poor apoptosis in head and neck cancer. Am. J. Pathol. 2004;164(4):1233–1241. DOI: 10.1016/S0002-9440(10)63211-7.
13. Siddique M.M., Balram C., Fiszer-Maliszewska L. et al. Evidence for selective expression of the p53 codon 72 polymorphs: implications in cancer development. Cancer Epidemiol. Biomarkers Prev. 2005;14(9):2245–2252. DOI: 10.1158/1055-9965.EPI-05-0153.
14. Schneider-Stock R., Boltze C., Peters B. et al. Selective loss of codon 72 proline p53 and frequent mutational inactivation of the retained arginine allele in colorectal cancer. Neoplasia. 2004;6(5):529–535. DOI: 10.1593/neo.04178.
15. Furihata M., Takeuchi T., Matsumoto M. et al. p53 mutation arising in Arg72 allele in the tumorigenesis and development of carcinoma of the urinary tract. Clin. Cancer Res. 2002;8(5):1192–1195.
16. Tominaga T., Iwahashi M., Takifuji K. et al. Combination of p53 codon 72 polymorphism and inactive p53 mutation predicts chemosensitivity to 5-fluorouracil in colorectal cancer. Int. J. Cancer. 2010;126(7):1691–1701. DOI: 10.1002/ijc.24929.
17. Zawlik I., Kita D., Vaccarella S. et al. Common polymorphisms in the MDM2 and TP53 genes and the relationship between TP53 mutations and patient outcomes in glioblastomas. Brain Pathol. 2009;19(2):188–194. DOI: 10.1111/j.1750-3639.2008.00170.x.
18. Bergamaschi D., Gasco M., Hiller L. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Сancer Cell. 2003;3(4):387–402. DOI: 10.1016/s1535-6108(03)00079-5.
19. Bonafé M., Ceccarelli C., Farabegoli F. et al. Retention of the p53 codon 72 arginine allele is associated with a reduction of disease-free and overall survival in arginine/proline heterozygous breast cancer patients. Clin. Cancer Res. 2003;9(13):4860–4864.
20. El Hallani S., Ducray F., Idbaih A. et al. TP53 codon 72 polymorphism is associated with age at onset of glioblastoma. Neurology. 2009;72(4):332–336. DOI: 10.1212/01.wnl.0000341277.74885.ec.
21. Zha Y., Gan P., Liu Q., Yao Q. TP53 codon 72 polymorphism predicts efficacy of paclitaxel plus capecitabine chemotherapy in advanced gastric cancer patients. Arch. Med. Res. 2016;47(1):13–18. DOI: 10.1016/j.arcmed.2015.12.001.
22. Voropaeva E.N., Pospelova T.I., Voevoda M.I. Association of DNA repair gene XRCC1 polymorphism ARG-399GLN with high-grade Non-Hodgkin’s lymphoma risk. Russian Journal of Hematology and Transfusiology. 2013;58(1):10–14. (In Russ.)
23. Voropaeva E.N., Pospelova T.I., Voevoda M.I., Maksimov V.N. Frequency, spectrum and functional significance in the TP53 mutations in patients with diffuse large B-cell lymphoma. Molecular Biology. 2017;51(1):64–72. (In Russ.)
24. Adzhubei I., Schmidt S., Peshkin L. et al. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7(4):248–249. DOI: 10.1038/nmeth0410-248.
25. Voropaeva E.N., Pospelova T.I., Voevoda M.I., Maksimov V.N. The results of complex analysis of TP53 gene status in patients with diffuse large cell lymphoma. Russian Journal of Hematology and Transfusiology. 2016;61(3):138–143. DOI: 10.18821/0234-5730-2016-61-3-138-143. (In Russ.)
26. Voropaeva E.P., Voevoda M.I., Pospelova T.I., Maksimov V.N. Intronic polymorphisms of antionсogene TP53 in patients with indolent variants of Non-Hodgkin’s lymphomas. Advances in Gerontology. 2013;26(2):258–262. (In Russ.)
27. Voropaeva E.N., Pospelova T.I., Voevoda M.I. (2018). TP53 Gene in Diffuse Large B-cell lymphoma. Novosibirsk: Nauka. 164 p. (In Russ.)
28. IARC TP53 Database. URL: http://p53.iarc.fr/ProtocolsAndTools.aspx (accessed 19.01.2022).
29. Voropaeva E.N., Voevoda M.I., Pospelova T.I., Maksimov V.N. Linkage disequilibrium and haplotypes of the rs1042522, rs1625895, and rs1787862 of gene TP53 markers in patients with diffuse large B-cell lymphoma. Molecular Biology. 2014;48(5):763–770. DOI: 10.7868/S0026898414050176. (In Russ.)
30. Shi H., Tan S., Zhong H. et al. Winter temperature and UV are tightly linked to genetic changes in the p53 tumor suppressor pathway in Eastern Asia. Am. J. Hum. Genet. 2009;84(4):534–541. DOI: 10.1016/j.ajhg.2009.03.009.
31. Volkov A.N., Padukova A.D., Zinchuk P.V., Kutikhin A.G. Polymorphism of tumor suppressor gene tp53 among healthy donors and patients with rectal cancer. Experimental and Clinical Gastroenterology. 2019;2(162):45–49. DOI: 10.31146/1682-8658-ecg-162-2-45-49. (In Russ.)
32. Denisov E.V. Mutational variability of the TP53 gene in breast cancer. Cand Sci. (Biol.) Thesis. Omsk, 2010. 22 p. (In Russ.)
33. Chen M., Yang Y., Liu Y., Chen C. The role of chromosome deletions in human cancers. Adv. Exp. Med. Biol. 2018;1044:135–148. DOI: 10.1007/978-981-13-0593-1_9.
34. Kyndi M., Alsner J., Hansen L., Sørensen F.B., Overgaard J. LOH rather than genotypes of TP53 codon 72 is associated with disease-free survival in primary breast cancer. Acta Oncologica. 2006;45(5):602–609. DOI: 10.1080/02841860600660811.
35. Stefancikova L., Moulis M., Fabian P. et al. Loss of the p53 tumor suppressor activity is associated with nega tive prognosis of mantle cell lymphoma. Int. J. Oncol. 2010;36(3):699–706. DOI: 10.3892/ijo_00000545.
36. Tamimi Y., Al-Harthy S., Al-Haddabi I. et al. The p53 mutation/deletion profile in a small cohort of the Omani population with diffuse large B-cell lymphoma. Sultan Qaboos Univ. Med. J. 2014;14(1):e50–e58. DOI: 10.12816/0003336.
37. Nugis V.Yu. FISH-method: technique of cytogenetic retrospective dose evaluation (review). Saratov Journal of Medical Scientific Research. 2016;12(2):35. (In Russ.)
38. Voropaeva E.N., Pospelova T.I., Voevoda M.I. et al. Clinical aspects of TP53 gene inactivation in diffuse large B-cell lymphoma. BMC Med. Genomics. 2019;13:35–44. DOI: 10.1186/s12920-019-0484-9.
39. Walsh T., Lee M.K., Casadei S. et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc. Nat. Acad. Sci. USA. 2010;107(28):12629–12633. DOI: 10.1073/pnas.1007983107.
40. Gyulkhandanyan A., Rezaie A.R., Roumenina L. et al. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol. Genet. Genomic Med. 2020;8(4):e1166–e1171. DOI: 10.1002/mgg3.1166.
41. Sauna Z.E., Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011;12(10):683–691. DOI: 10.1038/nrg3051.
42. Le Calvez F., Mukeria A., Hunt J.D. et al. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res. 2005;65(12):5076–5083. DOI: 10.1158/0008-5472.CAN-05-0551.
43. Li S., Young K.H., Medeiros L.J. Diffuse large B-cell lymphoma. Pathology. 2018;50(1):74–87. DOI: 10.1016/j.pathol.2017.09.006.
44. Weige C.C., Birtwistle M.R., Mallick H. et al. Transcriptomes and shRNA suppressors in a TP53 allele-specific model of early-onset colon cancer in African Americans. Mol. Cancer Res. 2014;12(7):1029–1041. DOI: 10.1158/1541-7786.MCR-13-0286-T.
45. Jeong B.S., Hu W., Belyi V., Rabadan R., Levine A.J. Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. FASEB J. 2010;24(5):1347–1353. DOI: 10.1096/fj.09-146001.
Review
For citations:
Voropaeva E.N., Churkina M.I., Bashirzade K.A., Pospelova T.I., Ageeva Т.A., Maksimov V.N. The occurrence of ТР53 gene mutations and loss of heterozygosity in diffuse large B-cell lymphoma in the dependence of rs1042522 genotype. Journal of Siberian Medical Sciences. 2022;(3):72-89. https://doi.org/10.31549/2542-1174-2022-6-3-72-89