Preview

Journal of Siberian Medical Sciences

Advanced search

The role of cytokines and cell cycle regulators in predicting of therapy response in patients with chronic myeloid leukemia

https://doi.org/10.31549/2542-1174-2023-7-2-77-89

Abstract

I n t r o d u c t i o n . Despite significant advances in therapy of patients with chronic myeloid leukemia (CML), improved survival rates, development of resistance to tyrosine kinase inhibitors (TKIs) remains an urgent problem.

A i m . To study the correlation between the level of expression of regulatory proteins p53, c-myc, ki-67 and caspase-3 on the bone marrow cells and the concentration of certain pro- and anti-inflammatory cytokines in blood serum with the effectiveness of therapy in patients with CML.

M a t e r i a l s a n d m e t h o d s . Seventy-four CML patients with chronic phase of the disease receiving TKI therapy were examined. In all patients, the concentration of certain cytokines and growth factors (TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17, IL-18, IFN-α, and VEGF-A) was determined in blood serum by enzyme immunoassay and immunocytochemical study of bone marrow smears with monoclonal antibodies against antigens of regulatory molecules ki-67, p53, c-myc, and caspase-3. To determine the role of the biomarkers in predicting the therapy effectiveness, a comparative analysis of their values in groups of patients with a major molecular response (MMR) (n = 50) and without MMR (n = 24) was performed.

R e s u l t s . A comparative analysis of the expression of regulatory molecules on the bone marrow cells and the blood serum concentration of cytokines and growth factors of CML patients, depending on depth of the response to TKI therapy, showed that patients who did not achieve MMR had a significantly higher level of caspase-3 expression and concentration of pro-inflammatory cytokines IL-1β, IL-2, IL-6 and IL-17, as well as growth factor VEGF-A compared with those in patients with MMR. In turn, the achievement of MMR was characterized by a higher level of expression of regulatory molecules p53 and c-myc, as well as an increase in the IL-10 concentration and a decrease in the IL-1β, IL-2, IL-6 and IL-17 concentration. Analysis of the correlation between the level of expression of regulatory molecules and the single cytokine concentration showed a negative correlation between c-myc and p53 with IL-2, IL-1β, IL-17 and a positive (direct) correlation between c-myc and p53 with IL-10, a positive correlation between caspase-3 and IL-2, IL-1β, IL-6, IL-17 and a negative correlation between caspase-3 and IL-10. Thus, the achievement of MMR in patients with CML is more likely with a higher expression of regulatory molecules c-myc and p53 on the bone marrow cells, low expression of caspase-3, and low serum concentrations of IL-2, IL-1β, IL-17, IL-6 and a high concentration of IL-10, which indicates synergism of the biomarkers in the pathogenesis of CML and its tumor progression. The ROC analysis results showed the high quality of predictive models characterizing the achievement of MMR at the level of expression of c-myc > 6%, p53 > 4% in the bone marrow, which correlates with a low serum concentrations of IL-2, IL-1β, IL-17 and a high concentration of IL-10, and indicates the possibility of using these indicators as potential biomarkers of effectiveness of CML therapy and achievement of MMR.

C o n c l u s i o n . The results of the study showed that the concentration of cytokines in the blood serum of CML patients correlates with the intensity of expression of c-myc, p53 and caspase-3 proteins and is important in predicting the effectiveness of therapy.

About the Authors

T. N. Aleksandrova
Novosibirsk State Medical University
Russian Federation

Tujara N. Aleksandrova – Post-graduate Student, Department of Therapy, Hematology and Transfusiology

52, Krasny prosp., Novosibirsk, 630091



I. I. Mulina
Republican Hospital No. 1 – National Center of Medicine
Russian Federation

Inna I. Mulina – Head, Hematology Department

Yakutsk, Republic of Sakha (Yakutia)



A. S. Lyamkina
Novosibirsk State Medical University
Russian Federation

Anna S. Lyamkina – Cand. Sci. (Med.), Associate Professor, Department of Therapy, Hematology and Transfusiology

Novosibirsk



E. S. Mikhailova
Novosibirsk State Medical University; Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Elena S. Mikhailova – Researcher, Central Research Laboratory; Researcher

Novosibirsk



A. I. Autenshlyus
Novosibirsk State Medical University; Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Alexander I. Autenshlyus – Dr. Sci. (Med.), Head, Central Research Laboratory; Senior Researcher

Novosibirsk



N. V. Skvortsova
Novosibirsk State Medical University
Russian Federation

Nataliya V. Skvortsova – Dr. Sci. (Med.), Associate Professor, Department of Therapy, Hematology and Transfusiology

Novosibirsk



T. A. Ageeva
Novosibirsk State Medical University
Russian Federation

Tatyana A. Ageeva – Dr. Sci. (Med.), Professor, Department of Pathological Anatomy

Novosibirsk



T. I. Pospelova
Novosibirsk State Medical University
Russian Federation

Tatyana I. Pospelova – Dr. Sci. (Med.), Professor, Head, Department of Therapy, Hematology and Transfusiology

Novosibirsk



References

1. Cortes J., Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions. J. Hematol. Oncol. 2021;14(1):44. DOI: 10.1186/s13045-021-01055-9.

2. Zhang B., Ho Y.W., Huang Q. et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012;21(4):577-592. DOI: 10.1016/j.ccr.2012.02.018.

3. Malireddi R.K.S., Karki R., Sundaram B. et al. Infl ammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons. 2021;5(7):568-580. DOI: 10.4049/immunohorizons.2100059.

4. Hochhaus A., Baccarani M., Silver R.T. et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966- 984. DOI: 10.1038/s41375-020-0776-2.

5. Harrington P., Dillon R., Radia D. et al. Chronic myeloid leukaemia patients at diagnosis and resistant to tyrosine kinase inhibitor therapy display exhausted T-cell phenotype. Br. J. Haematol. 2022;198(6):1011-1015. DOI: 10.1111/bjh.18302.

6. Lee C.R., Kang J.A., Kim H.E. et al. Secretion of IL-1β from imatinib-resistant chronic myeloid leukemia cells contributes to BCR-ABL mutation-independent imatinib resistance. FEBS Lett. 2016;590(3):358-368. DOI: 10.1002/1873-3468.12057.

7. Nievergall E., Reynolds J., Kok C.H. et al. TGF-α and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia. 2016;3(6):1263-1272. DOI: 10.1038/leu.2016.34.

8. Kvasnicka H.M., Thiele J., Staib P. et al. Reversal of bone marrow angiogenesis in chronic myeloid leukemia following imatinib mesylate (STI571) therapy. Blood. 2004;103(9):3549-3551. DOI: 10.1182/blood-2003-08-2734.

9. Han Y., Ye A., Bi L. et al. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci. 2014;105(8):933-942. DOI: 10.1111/cas.12459.

10. Sosnina A.V., Velikaya N.V., Varaksin N.A. et al. (2014). The Role of Cytokines in the Pathogenesis of Malignant Neoplasms. Novosibirsk, 128 p. (In Russ.)

11. Mannino M.H., Zhu Z., Xiao H. et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015;367(2):103-107. DOI: 10.1016/j.canlet.2015.07.009.

12. Gerlini G., Tun-Kyi A., Dudli C. et al. Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am. J. Pathol. 2004;165(6):1853-1863. DOI: 10.1016/S0002-9440(10)63238-5.

13. Goetz A.W., van der Kuip H., Maya R. et al. Requirement for Mdm2 in the survival effects of Bcr-Abl and interleukin 3 in hematopoietic cells. Cancer Res. 2001;61(20):7635-7641.

14. Velasco-Hernández T., Vicente-Dueñas C., Sánchez- García I. et al. p53 restoration kills primitive leukemia cells in vivo and increases survival of leukemic mice. Cell Cycle. 2013;12(1):122-132. DOI: 10.4161/cc.23031.

15. Carter B.Z., Mak P.Y., Mak D.H. Synergistic eff ects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget. 2015;6(31):30487-30499. DOI: 10.18632/oncotarget.5890.

16. Duffy M.J., O’Grady S., Tang M., Crown J. MYC as a target for cancer treatment. Cancer Treat. Rev. 2021;94:102154. DOI: 10.1016/j.ctrv.2021.102154.

17. Pippa R., Odero M.D. The role of MYC and PP2A in the initiation and progression of myeloid leukemias. Cells. 2020;9(3):544. DOI: 10.3390/cells9030544.

18. Elbadawy M., Usui T., Yamawaki H., Sasaki K. Emerging roles of c-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: a potential therapeutic target against colorectal cancer. Int. J. Mol. Sci. 2019;20(9):2340. DOI: 10.3390/ijms20092340.

19. Akita H., Marquardt J.U., Durkin M.E. et al. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res. 2014;74(20):5903-5913. DOI: 10.1158/0008-5472.CAN-14-0527.

20. Miller D.M., Thomas S.D., Islam A. et al. c-Myc and cancer metabolism. Clin. Cancer Res. 2012;18(20):5546- 5553. DOI: 10.1158/1078-0432.CCR-12-0977.

21. Ji F., Zhang Zh., Zhang Y. et al. Low expression of c-Myc protein predicts poor outcomes in patients with hepatocellular carcinoma after resection. BMC Cancer. 2018;18(1):460. DOI: 10.1186/s12885-018-4379-5.

22. Yang X., Zhong D.N., Qin H. et al. Caspase-3 overexpression is associated with poor overall survival and clinicopathological parameters in breast cancer: a metaanalysis of 3091 cases. Oncotarget. 2017;9(9):8629-8641. DOI: 10.18632/oncotarget.23667.

23. Flanagan L., Meyer M., Fay J. et al. Low levels of Caspase- 3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell. Death. Dis. 2016;7:e2087. DOI: 10.1038/cddis.2016.7.

24. Schauer I.G., Zhang J., Xing Z. et al. Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κBmediated inflammatory response in stromal fibroblasts. Neoplasia. 2013;15(4):409-420. DOI: 10.1593/neo.121228.

25. Li Q., Xu X., Zhong W. et al. IL-17 induces radiation resistance of B lymphoma cells by suppressing p53 expression and thereby inhibiting irradiation-triggered apoptosis. Cell. Mol. Immunol. 2015;12(3):366-372. DOI: 10.1038/cmi.2014.122.

26. Liu L., Lu Y., Martinez J. et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc. Natl. Acad. Sci. USA. 2016;113(6):1564-1569. DOI: 10.1073/pnas.1518000113.


Review

For citations:


Aleksandrova T.N., Mulina I.I., Lyamkina A.S., Mikhailova E.S., Autenshlyus A.I., Skvortsova N.V., Ageeva T.A., Pospelova T.I. The role of cytokines and cell cycle regulators in predicting of therapy response in patients with chronic myeloid leukemia. Journal of Siberian Medical Sciences. 2023;(2):77-89. (In Russ.) https://doi.org/10.31549/2542-1174-2023-7-2-77-89

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)