Preview

Journal of Siberian Medical Sciences

Advanced search

The phenotype of the metabolic syndrome formation in the perimenopausal cohort of women without dysglycemia depending on the presence of arterial hypertension

https://doi.org/10.31549/2542-1174-2023-7-3-37-53

Abstract

Introduction . The high incidence of arterial hypertension (AH) in the population, its close association with menopause and disorders of carbohydrate metabolism with an emphasis on the predictive role of fasting glycemia (FG) for type 2 diabetes mellitus draws attention to the phenotype of the formation of metabolic syndrome (MS) in perimenopause depending on the presence of hypertension without dysglycemia.

Aim of  the research . To evaluate the associations between blood pressure (BP) levels and FG during the formation of insulin resistant menopausal MS in a cohort of normoglycemic women aged 35–59 years with AH and normotensive.

Materials and methods . In the perimenopausal cohort of women aged 35–59 years without dysglycemia (n = 88), 58 women had hypertension, 30 were normotensive. The following were determined: body mass index (BMI), waist circumference (WC), levels of BP, triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), insulin, folliclestimulating hormone (FSH) and estradiol, FG, TyG and HOMA2 family (HOMA2-IR and HOMA2-%B) indices. Using SPSS (version 17), we estimated the median (25; 75%); intergroup diff erences according to the Mann-Whitney test; then, the correlation analyses were carried out: according to Spearman (R) and partial (Rpc) to level the infl uence of age.

Results . Signifi cant associations of systolic BP (SBP) and FG levels, direct and mediated through lipid (TG and HDL-C) and anthropometric (WC) parameters of MS, were revealed with most of the correlations being only partially agedependent. Among these parameters, the mediators of insulin resistance, the associations of SBP and FG with WC are the most pronounced; it is WC that stably correlates with insulin resistance indices, more specifi cally with TyG. The correlations of TG levels with HDL-C (R = –0.564; p < 0.001) are also relevant when the infl uence of age is leveled (Rpc = –0.477; p < 0.001); with them, as well as with the levels of insulin and the duration of postmenopause, FG correlates. BP levels, especially systolic, form correlations with insulin resistance indices, more stable with non-insulin TyG index, in contrast to age-dependent relationships with HOMA2-IR.

Conclusion . The extensiveness of the revealed correlations between BP and FG levels with markers and factors for the formation of menopausal MS, including the relation of BP with HOMA2-IR indices and especially TyG, refl ects its insulin resistant pathogenetic basis. Along with this, signifi cant stable correlations of the duration of postmenopause with FG refl ect a high risk of progression to dysglycemia in the analyzed phenotype of metabolic syndrome and allow us to consider menopause as a unique factor contributing to the rapid clustering of MS in women, determining the interest in clarifying its formation trajectories.

About the Authors

D. S. Ruyatkin
Novosibirsk State Medical University
Russian Federation

Dmitry S. Ruyatkin – Cand. Sci. (Med.), Associate Professor, Department of Emergency Treatment with Endocrinology and Occupational Pathology

Novosibirsk



L. A. Ruyatkina
Novosibirsk State Medical University
Russian Federation

Lyudmila A. Ruyatkina – Dr. Sci. (Med.), Professor, Department of Emergency Treatment with Endocrinology and Occupational Pathology

Novosibirsk



L. V. Shcherbakova
Institute of Internal and Preventive Medicine – a branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Lilia V. Shcherbakova – Senior Researcher

Novosibirsk



References

1. Meloni A., Cadeddu C., Cugusi L. et al. Gender diff erences and cardiometabolic risk: the importance of the risk factors // Int. J. Mol. Sci. 2023;24(2):1588. DOI: 10.3390/ijms24021588.

2. Sherling D.H., Perumareddi P., Hennekens C.H. Metabolic syndrome: clinical and policy implications of the new silent killer // J. Cardiovasc. Pharmacol. Ther. 2017;22(4):365-367. DOI: 10.1177/1074248416686187.

3. Roa-Díaz Z.M., Raguindin P.F., Bano A. et al. Menopause and cardiometabolic diseases: What we (don’t) know and why it matters // Maturitas. 2021;152:48-56. DOI: 10.1016/j.maturitas.2021.06.01.

4. Assmann G., Guerra R., Fox G. et al. Harmonizing the defi nition of the metabolic syndrome: comparison of the criteria of the Adult Treatment Panel III and the International Diabetes Federation in United States American and European populations // Am. J. Cardiol. 2007;99(4):541-548. DOI: 10.1016/j.amjcard.2006.08.045.

5. Moreau K.L., Hildreth K.L., Meditz A.L. et al. Endothelial function is impaired across the stages of the menopause transition in healthy women // J. Clin. Endocrinol. Metab. 2012;97(12):4692-4700. DOI: 10.1210/jc.2012-2244.

6. Jeong H.G., Park H. Metabolic disorders in menopause // Metabolites. 2022;12(10):954. DOI: 10.3390/ metabo12100954.

7. De Paoli M., Zakharia A., Werstuck G.H. The role of estrogen in insulin resistance: a review of clinical and preclinical data // Am. J. Pathol. 2021;191(9):1490- 1498. DOI: 10.1016/j.ajpath.2021.05.011.

8. de Cuevillas B., Alvarez-Alvarez I., Riezu-Boj J.I. et al. The hypertriglyceridemic-waist phenotype as a valuable and integrative mirror of metabolic syndrome traits // Sci. Rep. 2021;11(1):21859. DOI: 10.1038/s41598-021-01343-x.

9. Alberti K.G.M.M., Zimmet P., Shaw J. Metabolic syndrome – a new world-wide defi nition. A consensus statement from the International Diabetes Federation // Diabet. Med. 2006;23(5):469-80. DOI: 10.1111/j.1464-5491.2006.01858.x.

10. Stanciu S., Rusu E., Miricescu D. et al. Links between metabolic syndrome and hypertension: the relationship with the current antidiabetic drugs // Metabolites. 2023;13(1):87. DOI: 10.3390/metabo13010087.

11. Li Q., Wang X., Ni Y. et al. Epidemiological characteristics and risk factors of T2DM in Chinese premenopausal and postmenopausal women // Lipids Health Dis. 2019;18(1):155. DOI: 10.1186/s12944-019-1091-7.

12. Majnarić L.T., Martinović I., Šabanović Š. et al. The eff ect of hypertension duration and the age of onset on CV risk factors expression in perimenopausal women // Int. J. Hypertens. 2019;2019:9848125. DOI: 10.1155/2019/9848125.

13. Af Geijerstam P., Engvall J., Östgren C.J. et al. Home blood pressure compared with offi ce blood pressure in relation to dysglycemia // Am. J. Hypertens. 2022;35(9):810-819. DOI: 10.1093/ajh/hpac082.

14. Tao L.C., Xu J.N., Wang T.T. et al. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations // Cardiovasc Diabetol. 2022;21(1):68. DOI: 10.1186/s12933-022-01511-x.

15. Khan S.H., Sobia F., Niazi N.K. et al. Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance // Diabetol. Metab. Syndr. 2018;10:74. DOI: 10.1186/s13098-018-0376-8.

16. Menopause and the climacteric in women. Clinical guidelines (2021). Russian Society of Obstetricians and Gynecologists. URL: https://cr.minzdrav.gov.ru/schema/117_2 (accessed 15.06.2023).

17. Ruyatkina L.A., Ruyatkin D.S., Iskhakova I.S. Opportunities and options for surrogate assessment of insulin resistance. Obesity and Metabolism. 2019;16(1):27-33. DOI: 10.14341/omet10082. (In Russ.)

18. Karvonen-Gutierrez C., Kim C. Association of midlife changes in body size, body composition and obesity status with the menopausal transition // Healthcare (Basel). 2016;4(3):42. DOI: 10.3390/healthcare4030042.

19. Gesteiro E., Megía A., Guadalupe-Grau A. et al. Early identifi cation of metabolic syndrome risk: А review of reviews and proposal for defi ning pre-metabolic syndrome status // Nutr. Metab. Cardiovasc. Dis. 2021;31(9):2557- 2574. DOI: 10.1016/j.numecd.2021.05.022.

20. Blüher M. Metabolically healthy obesity // Endocr. Rev. 2020;41(3):bnaa004. DOI: 10.1210/endrev/bnaa004.

21. Chen Y.Y., Fang W.H., Wang C.C. et al. Characterization of cardiometabolic risks in diff erent combination of anthropometric parameters and percentage body fat // Sci. Rep. 2019;9(1):14104. DOI: 10.1038/s41598-019-50606-1.

22. Hopkins J.L., Hopkins P.N., Brinton E.A. et al. Expression of metabolic syndrome in women with severe obesity // Metab. Syndr. Relat. Disord. 2017;15(6):283- 290. DOI: 10.1089/met.2016.0116.

23. Genovesi S., Montelisciani L., Giussani M. et al. Role of insulin resistance as a mediator of the relationship between body weight, waist circumference, and systolic blood pressure in a pediatric population // Metabolites. 2023;13(3):327. DOI: 10.3390/metabo13030327.

24. Wallace T.M., Levy J.C., Matthews D.R. Use and abuse of HOMA modeling // Diabetes Care. 2004;27(6):1487- 1495. DOI: 10.2337/diacare.27.6.1487.

25. Ramesh R., Pandurangan V., Madhavan S. et al. Comparison of fasting insulin level, homeostatic model of insulin resistance, and lipid levels between patients with primary hypertension and normotensive subjects // Rambam Maimonides Med. J. 2022;13(2):e0009. DOI: 10.5041/RMMJ.10468.

26. Romantsova T.I., Ostrovskaya E.V. Metabolically healthy obesity: defi nitions, protective factors, clinical relevance. Almanac of Clinical Medicine. 2015;1(1):75-86. DOI: 10.18786/2072-0505-2015-1-75-86. (In Russ.)

27. Lin C.H., Wei J.N., Fan K.C. et al. Diff erent cutoff s of hypertension, risk of incident diabetes and progression of insulin resistance: а prospective cohort study // J. Formos. Med. Assoc. 2022;121(1):193-201. DOI: 10.1016/j.jfma.2021.02.022.

28. Sharma J., McAlister J., Aggarwal N.R. et al. Evaluation and management of blood lipids through a woman's life cycle // Am. J. Prev. Cardiol. 2022;10:100333. DOI: 10.1016/j.ajpc.2022.100333.

29. Lioy B., Webb R.J., Amirabdollahian F. The association between the atherogenic index of plasma and cardiometabolic risk factors: a review // Healthcare (Basel). 2023;11(7):966. DOI: 10.3390/healthcare11070966.

30. Yu W., Zhou G., Fan B. et al. Temporal sequence of blood lipids and insulin resistance in perimenopausal women: the study of women’s health across the nation // BMJ Open Diabetes Res. Care. 2022;10:e002653. DOI: 10.1136/bmjdrc-2021-002653.

31. Lou Y., Zhang Y., Zhao P. et al. Association of fasting plasma glucose change trajectory and risk of hypertension: a cohort study in China // Endocr. Connect. 2022;11(1):e210464. DOI: 10.1530/EC-21-0464.

32. Ruyatkina L.A., Ruyatkin D.S., Iskhakova I.S. Analysis of the formation of dysglycemia in the substantiation of early pathogenetic therapy of diabetes mellitus. Medical Council. 2021;(7):33-44. DOI: 10.21518/2079-701X-2021-7-33-44. (In Russ.)

33. Son D.H., Lee H.S., Lee Y.J. et al. Comparison of triglyceride- glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome // Nutr. Metab. Cardiovasc. Dis. 2022;32(3):596-604. DOI: 10.1016/j.numecd.2021.11.017.


Review

For citations:


Ruyatkin D.S., Ruyatkina L.A., Shcherbakova L.V. The phenotype of the metabolic syndrome formation in the perimenopausal cohort of women without dysglycemia depending on the presence of arterial hypertension. Journal of Siberian Medical Sciences. 2023;(3):37-53. (In Russ.) https://doi.org/10.31549/2542-1174-2023-7-3-37-53

Views: 129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-1174 (Print)