Epidemiological features of the distribution of hereditary cerebellar ataxia
https://doi.org/10.31549/2542-1174-2023-7-3-132-144
Abstract
Hereditary cerebellar ataxias (HCA) is a heterogeneous group of genetic neurological neurodegenerative diseases with a steadily progressive course. Ataxia is manifested by disturbed equilibrium, speech. Diseases of this group, as a differrule, lead to disability of the patient. Advances in the field of molecular genetic research have made it possible to determine the form of HCA in accordance with the type of inheritance, and on this basis a classification of HCA has been formed. Monogenic (autosomal dominant, autosomal recessive, X-linked) and non-traditional types of inheritance of cerebellar ataxias (mitochondrial, expansion of trinucleotide repeats) are distinguished, sporadic forms with an unidentified or unknown type of transmission are also distinguished. Thus, HCA are classified into autosomal dominant spinocerebellar ataxias (SCA), they include 48 forms, some of which are polyglutamine SCA, and autosomal recessive, about 100 nosological entities. In addition, episodic cerebellar ataxia is also classified as an autosomal dominant ataxia. Among autosomal dominant ataxias, SCA3 or Machado-Joseph disease is the most common, followed by SCA2 and SCA6. However, in Russia, the prevalence is different. Among autosomal recessive ataxias, the most common is Friedreich’s ataxia, which also belongs to polyglutamine diseases. It should be taken into account that different methodological approaches lead to great heterogeneity and scattering of results in determining the prevalence of one or another form of hereditary ataxia both within the country and among the countries. The review presents current data on the prevalence of various forms of HCA in different regions of the world and populations. However, there is still a great deal of uncertainty regarding the overall prevalence of certain hereditary forms of cerebellar ataxia.
About the Authors
L. E. AbramovskikhRussian Federation
Leila E. Abramovskikh – Cand. Sci. (Med.), Senior Researcher, Laboratory of Clinical and Experimental Neurology
Novosibirsk
P. I. Pilipenko
Russian Federation
Pavel I. Pilipenko – Dr. Sci. (Med.), Professor, Head, Department of Clinical Neurology and Neurogeriatrics, Novosibirsk State Medical University; Leading Researcher, Head, Laboratory of Clinical and Experimental Neurology, Federal Research Center for Fundamental and Translational Medicine
Novosibirsk
M. I. Voevoda
Russian Federation
Mikhail I. Voevoda – Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Director
Novosibirsk
J. V. Maksimova
Russian Federation
Julia V. Maksimova – Dr. Sci. (Med.), Professor, Head, Department of Medical Genetics and Biology
Novosibirsk
References
1. Lipponen J., Helisalmi S., Raivo J. et al. Molecular epidemiology of hereditary ataxia in Finland // Neurol. Genet. 2020;6(3):e440. DOI: 10.1186/s12883-021-02409-z.
2. Holmes G. An attempt to classify cerebellar disease, with a note on Marie’s hereditary cerebellar ataxia // Brain. 1907;30:545-567.
3. Greenfi eld J.G. The Spinocerebellar Degenerations. Springfi eld, IL: Charles C. Thomas, 1954. 4. Harding A.E. Classifi cation of the hereditary ataxias and paraplegias // Lancet. 1983;1(8334):1151-1155. DOI: 10.1016/s0140-6736(83)92879-9.
4. Klyushnikov S.A., Illarioshkin S.N. Algorithm for diagnosing hereditary ataxias. Nervous Diseases. 2012;1:7- 12. (In Russ.)6. Jayadev S., Bird T.D. Hereditary ataxias: overview // Genet. Med. 2013;15(9):673-683. DOI: 10.1038/gim.2013.28.
5. Klockgether T. Update on degenerative ataxias // Curr. Opin. Neurol. 2011;24(4):339-345. DOI: 10.1097/WCO.0b013e32834875ba.
6. Hereditary ataxias: dominant. URL: https://neuromuscular. wustl.edu/ataxia/domatax.html (дата обращения: 10.05.2023).
7. Park J.Y., Joo K., Woo S.J. Ophthalmic manifestations and genetics of the polyglutamine autosomal dominant spinocerebellar ataxias: a review // Front. Neurosci. 2020;14:892. DOI: 10.3389/fnins.2020.00892 10. Anheim M., Tranchant C., Koenig M. The autosomal recessive cerebellar ataxias // N. Engl. J. Med. 2012;366(7):636-646. DOI: 10.1056/NEJMra1006610.
8. Rossi M., Anheim M., Durr A. еt al. The genetic nomenclature of recessive cerebellar ataxias // Mov. Disord. 2018;33(7):1056-1076. DOI: 10.1002/mds.27415.
9. Erichsen A.K., Koht J., Stray-Pedersen A. et al. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study // Brain. 2009;132(6):1577-1588. DOI: 10.1093/brain/awp056.
10. Musselman K.E., Stoyanov C.T., Marasigan R. et al. Prevalence of ataxia in children: a systematic review // Neurology. 2014;82(1):80-89. DOI: 10.1212/01. wnl.0000438224.25600.6c.
11. Ruano L., Melo C., Silva M.C., Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies // Neuroepidemiology. 2014;42(3):174-183. DOI: 10.1159/000358801.
12. Mundwiler A., Shakkottai V.G. Autosomal-dominant cerebellar ataxias // Handb. Clin. Neurol. 2018;147:173- 185. DOI: 10.1016/B978-0-444-63233-3.00012-9.
13. Klockgether T., Mariotti C., Paulson H.L. Spinocerebellar ataxia // Nat. Rev. Dis. Primers. 2019;5(1):24. DOI: 10.1038/s41572-019-0074-3.
14. Sullivan R., Yau W.Y., O’Connor E., Houlden H. Spinocerebellar ataxia: an update // J. Neurol. 2019;266(2):533- 544. DOI: 10.1007/s00415-018-9076-4.
15. Goldfarb L.G., Platonov F.A. Genetic identifi cation, clinical features and prevalence of spinocerebellar ataxia type 1 in the Republic of Sakha (Yakutia). Siberian Research. 2019;2(2):12-25. DOI: 10.33384/26587270.2019.02.002r. (In Russ.)
16. Platonov F.A., Tyryshkin K., Tikhonov D.G. et al. Genetic fi tness and selection intensity in a population aff ected with highincidence spinocerebellar ataxia type 1. Neurogenetics. 2016;17(3):179-185. DOI: 10.1007/s10048-016-0481-5
17. Illarioshkin S.N., Rudenskaya G.E., Ivanova-Smolenskaya I.A. et al. (2006). Hereditary Ataxias and Paraplegias. М.: МEDpress-inform. 416 p. (In Russ.)
18. Kirilenko N.B. (2004). Features of the nosological spectrum and clinical and genetic characteristics of hereditary diseases of the nervous system in the cities of Volgograd and Volzhsky: Cand. Sci. (Med.) thesis. Moscow. 28 p. (In Russ.)
19. Baryshnikova N.V., Dadali E.L., Okuneva E.G. et al. Hereditary diseases of the nervous system in the population of the Vladimir region. Genetics. 2002;3:400- 406. (In Russ.)
20. Proskokova T.N., Illarioshkin S.N. (2019). Hereditary Diseases of the Nervous System in the Khabarovsk Territory. Khabarovsk. 332 p. (In Russ.)
21. Mingazova E.Z. (2009). Clinical, epidemiological and molecular-genetic study of advanced spinocerebellar ataxias in the Republic of Bashkortostan: Cand. Sci. (Med.) thesis. Ufa. 171 p. (In Russ.)
22. Salman M.S. Epidemiology of cerebellar diseases and therapeutic approaches // Cerebellum. 2018;17(1):4- 11. DOI: 10.1007/s12311-017-0885-2.
23. Jin D.K., Oh M.R., Song S.M. et al. Frequency of spinocerebellar ataxia types 1,2,3,6,7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia // J. Neurol. 1999;246(3):207- 210. DOI: 10.1007/s004150050335.
24. Orozco Diaz G., Nodarse Fleites A., Cordovés Sagaz R., Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba // Neurology. 1990;40(9):1369-1375. DOI: 10.1212/wnl.40.9.1369.
25. Hekman K.E., Gomez C.M. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability // J. Neurol. Neurosurg. Psychiatry. 2015;86(5):554-561. DOI: 10.1136/jnnp-2014-308421.
26. Ohata T., Yoshida K., Sakai H. et al. A -16C>T substitution in the 5’ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano // J. Hum. Genet. 2006;51(5):461-466. DOI: 10.1007/s10038-006-0385-6.
27. Bahl S., Virdi K., Mittal U. et al. Evidence of a common founder for SCA12 in the Indian population // Ann. Hum. Genet. 2005;69(5):528-534. DOI: 10.1046/j.1529-8817.2005.00173.x.
28. Choubtum L., Witoonpanich P., Hanchaiphiboolkul S. et al. Analysis of SCA8, SCA10, SCA12, SCA17 and SCA19 in patients with unknown spinocerebellar ataxia: a Thai multicentre study // BMC Neurol. 2015;15:166. DOI: 10.1186/s12883-015-0425-y.
29. van Prooije T., Ibrahim N.M., Azmin S., van de Warrenburg B. Spinocerebellar ataxias in Asia: Prevalence, phenotypes and management // Parkinsonism Relat. Disord. 2021;92:112-118. DOI: 10.1016/j.parkreldis. 2021.10.023. 33. Bettencourt C., Lima M. Machado-Joseph Disease: from fi rst descriptions to new perspectives // Orphanet J. Rare Dis. 2011;6:35. DOI: 10.1186/1750-1172-6-35.
30. Bettencourt C., Fialho R.N., Santos C. et al. Segregation distortion of wild-type alleles at the Machado- Joseph disease locus: a study in normal families from the Azores islands (Portugal) // J. Hum. Genet. 2008;53(4):333-339. DOI: 10.1007/s10038-008-0261-7.
31. Sumathipala D.S., Abeysekera G.S., Jayasekara R.W. et al. Autosomal dominant hereditary ataxia in Sri Lanka // BMC Neurol. 2013;13:39. DOI: 10.1186/1471-2377-13-39
32. Chuluunbat M., Tsagaankhuu D., Tang S.C., Enkhsaikhan L. First report of a Mongolian family with spinocerebellar ataxia type I // J. Formos. Med. Assoc. 2019;118(5):951-952. DOI: 10.1016/j. jfma.2019.02.003.
33. Jayadev S., Michelson S., Lipe H., Bird T. Cambodian founder eff ect for spinocerebellar ataxia type 3 (Machado- Joseph disease) // J. Neurol. Sci. 2006;250(1- 2):110-113. DOI: 10.1016/j.jns.2006.08.006.
34. Lau K.K., Lam K., Shiu K.L. et al. Clinical features of hereditary spinocerebellar ataxia diagnosed by molecular genetic analysis // Hong Kong Med. J. 2004;10(4):255-259.
35. Synofzik M., Puccio H., Mochel F., Schöls L. Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies // Neuron. 2019;101(4):560- 583. DOI: 10.1016/j.neuron.2019.01.049.
36. Vankan P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge // J. Neurochem. 2013;126(1):11-20. DOI: 10.1111/jnc.12215.
37. Hadjivassiliou M., Martindale J., Shanmugarajah P. et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients // J. Neurol. Neurosurg. Psychiatry. 2017;88(4):301-309. doi: 10.1136/ jnnp-2016-314863.
38. Cheng H.L., Shao Y.R., Dong Y. et al. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias // Transl. Neurodegener. 2021;10(1):40. DOI: 10.1186/s40035-021-00264-z.
39. Synofzik M., Smets K., Mallaret M. et al. SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study // Brain. 2016;139(5):1378-1393. DOI: 10.1093/brain/aww079.
40. Nuzhnyi E.P., Abramycheva N.Yu., Klyushnikov S.A. et al. Diagnostic algorithm for autosomal recessive ataxia. S.S.Korsakov Journal of Neurology and Psychiatry. 2019;119(9):74-82. DOI: 10.17116/ jnevro201911909174. (In Russ.)
41. Rudenskaya G.E., Kurkina M.V., Zakharova E.Yu. Ataxia with oculomotor apraxia: clinical-genetic characteristics and DNA diagnostic. S.S.Korsakov Journal of Neurology and Psychiatry. 2012;112(10):58-63. (In Russ.)
42. Rudenskaya G.E., Marakhonov A.V., Shchagina O.A. et al. Ataxia with oculomotor apraxia type 4 with PNKP common “Portuguese” and novel mutations in two Belarusian families. J. Pediatr. Genet. 2019;8(2):58- 62. DOI: 10.1055/s-0039-1684008.
43. Ilchenko S.I., Koreniuk Ye.S., Samoilenko I.G. et al. A clinical case of Louis-Bar syndrome in epileptic adolescent. International Neurological Journal. 2015;6(76):188-192. (In Russ.)
44. Golousenko I.Yu. Unusual skin manifestations of ataxia-telangiectasia (Louis-Bar syndrome). Pharmateka. 2016;S2:14-16. (In Russ.)
Review
For citations:
Abramovskikh L.E., Pilipenko P.I., Voevoda M.I., Maksimova J.V. Epidemiological features of the distribution of hereditary cerebellar ataxia. Journal of Siberian Medical Sciences. 2023;(3):132-144. (In Russ.) https://doi.org/10.31549/2542-1174-2023-7-3-132-144